Производная и ее применение для решения прикладных задач

или

Так как

то уравнение имеет не более одного корня. Нетрудно заметить, что число t=1 является корнем. Отсюда нах

одим, что решением данной системы может быть только пара чисел х=2 и y=1.

3.13 Отбор кратных корней уравнения

Применение производной позволяет не только убедиться в существовании кратных корней (если они есть), но и дать способ отобрать все кратные корни, отделив их от простых корней. Имеет место следующее утверждение:

Наибольший общий делитель многочленов и имеет своими корнями лишь корни многочлена , причем только те из них, которые имеют кратность не меньше 2. Каждый их этих кратных корней многочлена является корнем наибольшего общего делителя кратности на единицу ниже. Простые корни многочлена не являются корнями наибольшего общего делителя многочленов и .

Отсюда вытекает следующее правило для нахождения кратных корней уравнения:

1. Находим .

2. Находим наибольший общий делитель многочленов и .

3. Находим корни наибольшего общего делителя многочленов и .

Каждый из найденных корней наибольшего общего делителя многочленов и является корнем многочлена , причем кратность этого корня на единицу больше его кратности в наибольшем общем делителе.

Отметим, что если наибольший общий делитель многочленов и есть константа, то уравнение =0 не имеет кратных корней.

Пример 1.

Решить уравнение

.

Решение.

Рассмотрим многочлен

производная которого равна

Найдем наибольший общий делитель многочленов и .

Имеем

Рис.1. - наибольший общий делитель многочленов

Таким образом, наибольший общий делитель многочленов и равен х-1 (с точностью до постоянного множителя).

Так как х=1 является простым корнем наибольшего общего делителя, что число х=1 будет двукратным корнем данного уравнения, и, значит, многочлен делится без остатка на Разделив на , находим, что Следовательно, корни исходного уравнения- это числа и х=6 и только они.

3.14 Вычисление пределов функции с помощью правила Лопиталя

Раскрытие неопределенностей типа и . Пусть однозначные функции и дифференцируемы при причем производная не обращается в нуль.

Если и - обе бесконечно малые или бесконечно большие при т.е. если частное представляет в точке х=неопределенность типа или , то при условии, что предел отношения производных существует (правило Лопиталя). Правило применимо и в случае, когда .

Если частное вновь дает неопределенность в точке х=одного из двух упомянутых типов и и удовлетворяют всем требованиям, ранее сформулированным для и , то можно перейти к отношению вторых производных и т.д.

Пример 1.

Пример 2.

Вычислить (неопределенность типа

Приведя дроби к общему знаменателю, получим:

(неопределенность типа

Прежде чем применить правило Лопиталя, заменим знаменатель последней дроби эквивалентной ему бесконечно малой

Получим:

(неопределенность типа

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы