Производная и ее применение для решения прикладных задач
Таким образом, функция является непрерывной и возрастающей на всей числовой прямой; поэтому ее график может пересекать ось ОХ только в одной точке. Учитывая, что , заключаем, что решениями данного неравенства являются все числа х из промежутка rc="images/referats/7475/image181.png">.
Пример 2.
Докажите неравенство (при ).
Доказательство.
При х=0 неравенство справедливо.
Рассмотрим функцию и найдем ее производную:
Производная обращается в нуль при
При то есть функция монотонно убывает. При то есть функция монотонно возрастает. При функция имеет минимум, равный нулю.
Таким образом, при значит .
Пример 3.
Доказать, что при имеет место неравенство
Решение.
Найдем участки возрастания и убывания функции
Так как то
при
при
при
Функция непрерывна на поэтому она возрастает на отрезке и убывает на промежутке Отсюда заключаем, что точка является точкой локального максимума функции (рис.).
Так как и то неравенство доказано.
3.10 Доказательство тождеств
Пример 1.
Решение
Рассмотрим функцию
.
При х=1 имеем . Пусть ; тогда
и
Поэтому следовательно, функция при является тождественно равной постоянной. Чтобы найти эту постоянную, вычислим, например, ; имеем:
.
Таким образом, данное тождество доказано для всех .
3.11. Решение уравнений
Пример 1.
Решение
Переписав данное уравнение в виде
, заметим, что его корнями являются абсциссы точек пересечения или касания графиков функций и .
Для выяснения взаимного расположения графиков этих функций найдем их точки экстремумов.
Так как , то эта функция достигает своего наименьшего значения, ровно 1, в точке х=1. Область существования функции состоит из всех х таких, что . Так как
то при ,
при ,
при .
Так как функция непрерывна на , то отсюда заключаем, что функция возрастает на промежутке и убывает на промежутке . Следовательно, точка х=1 является наибольшим значением функции на ее области существования.
Таким образом, при любом
,
.
Следовательно уравнение имеет один единственный корень х=1.
Взаимное расположение графиков показано на рисунке.
3.12 Решение систем уравнений
Пример 1.
Решить систему уравнений
Решение.
Перепишем данную систему в виде
Из первого уравнения этой системы следует, что ее решениями могут быть такие пары чисел (х,y), для каждого из которых y>0. Тогда эти пары чисел должны удовлетворять неравенству х>y>0, что следует из второго уравнения системы. Пусть тогда из первого уравнения системы находим, что Подставляя во втором уравнении системы вместо х и вместо y, получаем
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах