Производная и ее применение для решения прикладных задач
положением секущей, когда точки пересечения сливаются.
Таким образом,.
Уравнение касательной
, где - координаты точки касания,
а - текущие координаты точки касательной прямой.
Физический смысл производной заключается в скорости изменения функции.
Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).
13 Дифференциал
Пусть дана функция и - внутренняя точка её области определения. Придадим аргументу приращение и рассмотрим приращение функции
Если это приращение можно представить в виде где величина не зависит от приращения, а - бесконечно малая при величина, имеющая больший порядок малости, чем , то произведение называется дифференциалом функции в точке и обозначается .
Перечень прикладных задач:
-составление уравнения касательной к графику функции;
-нахождение угла между пересекающимися прямыми, между графиками функций;
-исследование и построение графиков функций;
-решение задач на оптимум;
-преобразование алгебраических выражений;
-разложение многочлена на множители;
-доказательство тождеств;
-вычисление сумм;
-решение уравнений;
-приближенные вычисления и оценка погрешностей;
-доказательство неравенств и тождеств;
-решение систем уравнений;
-решение задач с параметрами;
-отбор кратных корней уравнения;
-сравнение величин;
-определение периода функции;
-нахождение пределов функции с помощью правила Лопиталя;
-разложение функций в ряд с помощью формулы Тейлора;
-приближенное решение уравнений методом проб, хорд и касательных;
-линеаризация алгебраических функций и многое другое.
3. Примеры решения прикладных задач
3.1 Исследование функций и построение их графиков
Пример 1
Исследовать и построить график функции
Решение.
1. Функция существует для всех .
2. Функция не является ни четной, ни нечетной,
так как
,
то есть и .
3. В точке х=0 функция имеет разрыв в точке х=0.
При этом
4. Находим производную: и приравниваем ее к нулю:
. Точка будет критической.
Проверим достаточные условия экстремума в точке . Так как знаменатель производной всегда положителен, то достаточно проследить за знаком числителя. Получаем: при и при . Следовательно, в точке функция имеет минимум, ее значение в точке .
5. Точек пересечения с осью ОY нет, так как данная функция не определена при х=0. Чтобы найти точки пересечения кривой с осью ОХ, нужно решить уравнение .
Тогда или .
Получим, что при функция убывает; х=y=0; функция убывает; при функция убывает; при х=функция имеет минимум y=3; при функция возрастает.
График данной функции представлен на рисунке.
Кривая, рассмотренная в этой задаче называется «Трезубец Ньютона».
3.2 Нахождение наибольшего и наименьшего значения функции, решение прикладных задач (задач на оптимум)
Пример 1
Из бревна, имеющего радиус R, сделать балку наибольшей прочности.
Решение:
Составляем функцию, выражающую необходимое условие.
В данной задаче высота балки (представляющей собой прямоугольник, вписанный в окружность радиуса R и ширины х), равна . Поэтому прочность такой балки равна . При этом х изменяется от 0 до 2R.
Функция обращается в нуль при х=0 и х=2R и положительна между этими значениями. Значит она имеет максимум, лежащий между 0 и 2R. Но производная этой функции обращается в нуль на отрезке лишь при . Это и есть оптимальное значение ширины b балки. Высота h балки такой ширины равна и отношение равно . Именно такое отношение высоты вытесываемой балки к ее ширине предписывается правилами производства строительных работ.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах