Решение параболических уравнений
(в силу линейности уравнения (1.14)), а также следующими граничными и начальными условиями:
,
.
Частное решение уравнения (1.23) будем искать в виде
.
Здесь числа и следует подобрать так, чтобы выражение (1.26) удовлетворяло уравнению (1.23) и граничным условиям (1.24).
При целом удовлетворяет уравнению (1.23) и условиям (1.24).
Подставим уравнение (1.26) в уравнение (1.24). При этом получим:
или
.
Выражение в квадратных скобках равно
.
Подставляя это выражение в предыдущее уравнение вместо выражения в квадратных скобках и проводя сокращения на получим:
,
откуда находим :
.
Таким образом, согласно уравнению (1.26), получаем линейно-независимые решения уравнения (1.23) в виде
Заметим, что это частное решение удовлетворяет однородным краевым условиям (1.24). Линейная комбинация этих частных решений также является решением уравнения (1.23):
,
причем , определенное в выражении (1.27), удовлетворяет для любых однородным граничным условиям (1.24). Коэффициенты подбираются исходя из того, что должны удовлетворять начальным условиям (1.25):
.
В результате получаем систему уравнений
,
содержащую уравнений с неизвестными . Решая построенную систему определяем неизвестные коэффициенты .
Для устойчивости исследуемой разностной схемы необходимо, чтобы при любых значениях коэффициентов , определяемое формулой (1.27), оставалось ограниченной величиной при . Для этого достаточно, чтобы для всех выполнялось неравенство
.
Анализируя (1.28) видим, что это неравенство выполняется для любых значений параметра . При этом при или в крайнем случае, когда
,
остается ограниченным и при фиксированном не возрастает по модулю. Следовательно мы доказали, что рассматриваемая разностная схема устойчива для любых значений параметра .
2. Реализация метода
2.1 Разработка программного модуля
Поставлена цель: разработать программный продукт для нахождения приближенного решения параболического уравнения:
в области
,
удовлетворяющее условиям
Разобьем область прямыми
где
– шаг по оси ,
– шаг по оси .
Заменив в каждом узле производные конечно-разностными отношениями по неявной схеме, получим систему вида:
.
Преобразовав ее, получим:
,
где
В граничных узлах
В начальный момент
.
Эта разностная схема устойчива при любом . Будем решать систему уравнений (1.32), (1.33) и (1.34) методом прогонки. Для этого ищем значения функции в узле в виде
,
где – пока неизвестные коэффициенты.
Аналогично
.
Подставив значение (1.35) в (1.32) получим:
.
Откуда
.
Из сравнения (1.35) и (1.37) видно, что
.
.
Для из (1.32) имеем:
.
Откуда
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах