Решение параболических уравнений

(в силу линейности уравнения (1.14)), а также следующими граничными и начальными условиями:

,

.

Частное решение уравнения (1.23) будем искать в виде

.

Здесь числа и следует подобрать так, чтобы выражение (1.26) удовлетворяло уравнению (1.23) и граничным условиям (1.24).

При целом удовлетворяет уравнению (1.23) и условиям (1.24).

Подставим уравнение (1.26) в уравнение (1.24). При этом получим:

или

.

Выражение в квадратных скобках равно

.

Подставляя это выражение в предыдущее уравнение вместо выражения в квадратных скобках и проводя сокращения на получим:

,

откуда находим :

.

Таким образом, согласно уравнению (1.26), получаем линейно-независимые решения уравнения (1.23) в виде

Заметим, что это частное решение удовлетворяет однородным краевым условиям (1.24). Линейная комбинация этих частных решений также является решением уравнения (1.23):

,

причем , определенное в выражении (1.27), удовлетворяет для любых однородным граничным условиям (1.24). Коэффициенты подбираются исходя из того, что должны удовлетворять начальным условиям (1.25):

.

В результате получаем систему уравнений

,

содержащую уравнений с неизвестными . Решая построенную систему определяем неизвестные коэффициенты .

Для устойчивости исследуемой разностной схемы необходимо, чтобы при любых значениях коэффициентов , определяемое формулой (1.27), оставалось ограниченной величиной при . Для этого достаточно, чтобы для всех выполнялось неравенство

.

Анализируя (1.28) видим, что это неравенство выполняется для любых значений параметра . При этом при или в крайнем случае, когда

,

остается ограниченным и при фиксированном не возрастает по модулю. Следовательно мы доказали, что рассматриваемая разностная схема устойчива для любых значений параметра .

2. Реализация метода

2.1 Разработка программного модуля

Поставлена цель: разработать программный продукт для нахождения приближенного решения параболического уравнения:

в области

,

удовлетворяющее условиям

Разобьем область прямыми

где

– шаг по оси ,

– шаг по оси .

Заменив в каждом узле производные конечно-разностными отношениями по неявной схеме, получим систему вида:

.

Преобразовав ее, получим:

,

где

В граничных узлах

В начальный момент

.

Эта разностная схема устойчива при любом . Будем решать систему уравнений (1.32), (1.33) и (1.34) методом прогонки. Для этого ищем значения функции в узле в виде

,

где – пока неизвестные коэффициенты.

Аналогично

.

Подставив значение (1.35) в (1.32) получим:

.

Откуда

.

Из сравнения (1.35) и (1.37) видно, что

.

.

Для из (1.32) имеем:

.

Откуда

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы