Основы математики

3) Определим размах R: R = хmax - хmin = 99,9 - 26,7 = 73,2

Нижняя граница х0 = хmin – L / 2 = 26,7 – 10 / 2 = 21,7;

Верхняя граница хi = хmax + L / 2 = 99.9 + 10 / 2 = 104,9,

следовательно, у нас имеются интервалы: [21,7; 31,7); [31,7; 41,7); [41,7; 51,7); [51,7; 61,7); [61,7; 71,7); [71,7; 81,7); [81,7; 91,7);

[91,7; 104,7].

5) wi = ni / n

х 1-i x i

[21,7;

31,7)

[31,7;

41,7)

[41,7;

51,7)

[51,7;

61,7)

[61,7;

71,7)

[71,7;

81,7)

[81,7;

91,7)

[91,7;

104,7]

ni

1

9

14

19

29

14

8

6

wi

0,01

0,09

0,14

0,19

0,29

0,14

0,08

0,06

Рис. 1. Гистограмма относительных частот

Перейдем от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов. Построим полигон относительных частот и найдем эмпирическую функцию распределения, построим ее график:

x i

26,7

36,7

46,7

56,7

66,7

76,7

86,7

98,3

ni

1

9

14

19

29

14

8

6

wi

0,01

0,09

0,14

0,19

0,29

0,14

0,08

0,06

Рис. 2. График интервального распределения.

Рис. 3. График эмпирической функции распределения

* = ∑ xi wi = ∑ xi wi

∑ xi wi = 26,7 * 0,01 + 36,7 * 0,09 + 46,7 * 0,14 + 56,7 * 0,19 + 66,7 * 0,29 + 76,7 * 0,14 + 86,7 *0,08 + 98,3 * 0,06 =26,71 + 3, 303 + 6,538 + 10,773 +

+ 19,343 + 10,738 + 6,936 + 5,898 = 90,2

= ∑= = (26,7 – 90,2)2 * 0,01 +(36,7 – 90,2) 2 *0,09 + (46,7 – 90,2) 2 * 0,14 + (56,7 – 90,2) 2 * 0,19 + (66,7 – 90,2) 2 * 0,29 + (76,7 – 90,2) 2 *0,14 + (86,7 – 90,2) 2 * 0,08 + (98,3 – 90,2) 2 * 0,06 = 40,32 + 257,6 + 264,92 +213,23 + 160,15 + 25,52 + 0,98 + 3,94 = 966,66

Задание № 8

Даны среднее квадратическое отклонение σ, выборочное среднее и объем выборки n нормального распределенного признака генеральной совокупности. Найти доверительные интервалы для оценки генеральной средней с заданной надежностью γ.

σ

n

γ

7

112,4

26

0,95

Решение:

Доверительный интервал, в котором с вероятностью γ будет находиться средний интервал совокупности) для нормального распределения случайной величины с известным квадратичным отклонением σ, выборочной средней и объемом выборки n равен.

t – решение уравнения 2Ф (t) = γ, Ф (t) – функция Лапласа. В нашем случае Ф (t) = = 0,475, следовательно, значение Ф (t) соответствует t = 2,13, тогда доверительный интервал будет равен:

.

В этом интервале с вероятностью γ = 0,95, будет находиться средняя генеральной совокупности.

Задание № 9

Даны исправленное среднее квадратическое отклонение S, выборочное среднее и объем выборки n нормально распределенного признака генеральной совокупности. Пользуясь распределением Стьюдента, найти доверительные интервалы для оценки генеральной средней , с заданной надежностью γ.

S

n

γ

13

119.5

18

0,99

Решение:

Доверительный интервал, для нормального распределения случайной величины с известным квадратичным отклонением σ, но с известным исправленным средним квадратичным отклонением S, выборочной средней и объемом выборки n и доверительной вероятностью γ, имеет вид.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы