Основные понятия математического анализа

Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: - о

бщее решение.

Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.

Начальные условия так же могут задаваться в виде:

у=у0 при х=х0; у=у1 при х=х1.

Три случая понижения порядка

1. Случай непосредственного интегрирования

F(x,y”)=0

y’’=f(x)- решение этого уравнения находится путем двукратного интегрирования.

; ; ;

2. Когда дифференциальное уравнение явно не содержит у, т.е. F(x,y’,y”)=0

С помощью замены у’=р; это уравнение приводим к уравнению первого порядка .

3. Когда дифференциальное уравнение явно не содержит х, т.е. F(y,y’,y”)=0.

С помощью замены y’=p, это уравнение приводим к уравнению первого порядка .

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейными однородными дифурами второго порядка с постоянными коэффициентами называются уравнения вида:

y’’+py’+qy=0,

где p и q – некоторые числа.

Составим характеристическое уравнение:

,

которое получается из данного уравнения путем замены в нем производных искомой функции соответствующими степенями “к”. Причем сама функция заменяется единицей.

Если к1 и к2 – корни характериситического уравнения, то общее решение однородного уравнения имеет один из следующих трех видов:

1). , если к1 и к2 – действительные и различные, т.е. D>0.

2). , если к1 и к2 – действительные и равные, т.е. к1=к2, D=0.

3). , если к1 и к2 – комплексные, т.е. ; D<0.

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Имеют вид:

,

где p и q– некоторые числа.

Общее решение имеет вид:, где

y0 - общее решение соответствующего однородного уравнения; - частное решение соответствующего однородного уравнения.

Т.е. для нахождения общего решения неоднородного уравнения ‘у’, сначала находят общее решение соответствующего однородного уравнения у0, а затем частное решение , и складывают их.

Частное решение неоднородного уравнения находится методом неопределенных коэффициентов.

Для нахождения частных решений рассмотрим несколько случаев.

1. Пусть правая часть f(x) имеет вид:

, где Pn(x) – многочлен n–ой степени.

Тогда возможны следующие 3 случая:

А). Если ‘а’ не является корнем характеристического уравнения k2+pk+q=0, то частное решение имеет вид: , где Qn(x) – многочлен той же степени, что и Pn(x), только с неопределенными коэффициентами.

Например.

Pn(x)=8 - многочлен 0-ой степени (n=0). Qn(x)=A;

Pn(x)=2x-3 - многочлен 1-ой степени (n=1). Qn(x)=Ax+B;

Pn(x)=x2 - многочлен 2-ой степени (n=2). Qn(x)=Ax2+Bx+C;

Pn(x)=3x3-3x - многочлен 3-ей степени (n=3). Qn(x)=Ax3+Bx2+Cx+D.

Замечание. Многочлен Qn(x) всегда должен быть полный, т.е. содержать все степени х. Коэффициенты А,В,С,Д и т.д. находим по методу неопределенных коэффициентов непосредственно при решении каждого конкретного уравнения.

Б). Если а является однократным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с одним из корней характеристического уравнения, то частное решение имеет вид: .

В). Если а является двукратным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с двумя корнями характеристического уравнения, то частное решение имеет вид: .

Итог.

Если , то , где r– кратность корня ‘а’ в характеристическом уравнении, т.е. r=0, если ‘а’ не есть корень; r=1, если ‘а’ совпадает с одним из корней; r=2, если ‘а’ совпадает с двумя корнями.

2. Если правая часть f(x) имеет вид:, где Pn(x)–многочлен n–ой степени; Qm(x)-многочлен m–ой степени.

Тогда возможны следующие два случая:

А). Если не является корнем характеристического уравнения k2+pk+q=0 (), то частное решение имеет вид: , где SN(x), TN(x)–многочлены степени N с неопределенными коэффициентами, где N=max из n и m (N=max{n,m}), т.е. степень N многочленов SN(x) и TN(x) равна наибольшей из степеней многочленов Pn(x) и Qm(x).

Б). Если является корнем характеристического уравнения k2+pk+q=0 (), то частное решение имеет вид:

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы