Основные понятия математического анализа

Символически дифференциальное уравнение выглядит:

F(x,y,y’,y’’…,y(n))=0 или .

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядк

а.

3. Решением дифференциального уравнения называется всякая функция , которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б). ; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.

Подставляя в начальное условие , находим вполне определенные значения постоянной С. Тогда является частным решением уравнения.

Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.

Теорема существования и единственности решения дифференциального уравнения (теорема Коши).

Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение , удовлетворяющее начальному условию у=у0 при х=х0.

Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).

Замечание. “Найти частное решение”=“Решить задачу Коши”.

Существует 4 вида дифференциальных уравнений первого порядка.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными.

Дифференциальные уравнения первого порядка в общем виде можно записать либо через производные F(x,y,y’)=0, либо через дифференциалы

.

Дифференциальное уравнение- уравнение с разделяющимися переменными, если его можно представить в виде:

- - через производную.

- - через дифференциал.

В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.

Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.

Решение.

-

; -интегрируем и получаем решение.

-

;

Однородные дифференциальные уравнения первого порядка

Функция f(x,y) называется однородной функцией n–го измерения, если при любом выполняется условие: .

Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.

Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.

P(x,y)dx=-Q(x,y)dy;

Однородное уравнение всегда можно привести к виду и с помощью замены однородное уравнение всегда приводится к уравнению с разделяющимися переменными (; y=xt; y’=t+xt’).

Линейные дифференциальные уравнения

ЛДУ- уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.

Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’

U’V+UV’+P(x)UV=Q(x)

V(U’+P(x)U)+UV’=Q(x)

Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:

1). U’+P(x)U=0 находим U. 2). UV’=Q(x) находим V. . С ставится только при вычислении второго уравнения.

Замечание. Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.

Уравнения Бернулли

УБ- дифференциальные уравнения вида y’+P(x)y=Q(x)*yn, где

- т.к. при этих значениях уравнение будет линейным.

УБ решаются так же, как и линейные.

Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы