Основные понятия математического анализа
Ряд считается заданным, если известен n-ый (общий член ряда).
Числовой ряд имеет бесконечное число членов.
Числители – арифметическая прогрессия (1,3,5,7…).
n-ый член находится по формуле
аn=а1+d(n-1); d=аn-аn-1.
Знаменатель – геометриче
ская прогрессия.
bn=b1qn-1; .
Рассмотрим сумму первых n членов ряда и обозначим ее Sn.
Sn=а1+а2+…+аn.
Sn – n-ая частичная сумма ряда.
Рассмотрим предел:
S - сумма ряда.
Ряда сходящийся, если этот предел конечен (конечный предел S существует).
Ряд расходящийся, если этот предел бесконечен.
В дальнейшем наша задача заключается в следующем: установить какой ряд.
Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.
, C=const.
Геометрическая прогрессия является сходящимся рядом, если , и расходящимся, если .
Также встречается гармонический ряд (ряд ). Этот ряд расходящийся.
Свойства числовых рядов
1. Если сходится а1+а2+а3+…+аn+…=, то сходится и ряд аm+1+аm+2+аm+3+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.
2. Если ряд а1+а2+а3+… сходится и его сумма равна S, то ряд Са1+Са2+…, где С= так же сходится и его сумма равна СS.
3. Если ряды а1+а2+… и b1+b2+… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1+b1)+(а2+b2)+(а3+b3)+… и (а1-b1)+(а2-b2)+(а3-b3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.
4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).
- необходимый признак (условие) сходимости ряда.
б). Если то ряд расходящийся – достаточное условие расходимости ряда.
-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.
Знакоположительные ряды
Признаки сходимости и расходимости знакоположительных рядов.
Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.
1. Первый признак сравнения.
Пусть даны два знакоположительных ряда а1+а2+а3+…+аn+…=(1) и b1+b2+b3+…+bn+…=(2).
Если члены ряда (1) не больше соответствующих членов ряда (2), т.е. аnbn и ряд (2) сходится, то и ряд (1) также сходится.
Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. аnbn и ряд (2) расходится, то и ряд (1) также расходится.
Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.
2. Второй признак сравнения
Если существует конечный и отличный от нуля предел , то оба ряда сходятся или расходятся одновременно.
-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.
3. Признак Даламбера
Если для знакоположительного ряда (а1+а2+а3+…+аn+…=) существует (1), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.
4. Признак Коши радикальный
Если для знакоположительного ряда существует предел (2), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.
5. Признак Коши интегральный
Вспомним несобственные интегралы.
Если существует предел . Это есть несобственный интеграл и обозначается .
Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.
Пусть ряд а1+а2+а3+…+аn+…=- знакоположительный ряд.
Обозначим an=f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.
Если ряд конечен, то он сходится.
Очень часто встречаются ряды - ряд Дерихле. Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.
Знакопеременные и знакочередующиеся ряды
Знакопеременный ряд – это ряд, среди членов которого имеются как + так и – члены.
Частным случаем знакопеременного ряда является знакочередующийся ряд. Это ряд, у которого за каждым + членом следует -, и наоборот, т.е. знаки чередуются.
Пусть задан знакопеременный ряд а1+а2+а3+…+аn+…=(1) (члены как + так и -).
Возьмем ряд (3), составленный из абсолютных величин членов ряда (1). Ряд (3) является знакоположительным рядом.
Если ряд (3) сходится, то ряд (1) также сходится и называется абсолютно сходящимся (ответ получен сразу).
Если ряд (3) расходится, а:
- ряд (1) сходится, то ряд (1) называется условно сходящимся;
- ряд (1) расходится, то ряд (1) называется расходящимся.
При исследовании знакоположительных рядов можем получить 2 ответа: ряд сходится или ряд расходится.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах