Практические приложения алгебры высказываний
Введение
Как самостоятельная наука логика оформилась в трудах греческого философа Аристотеля (384-322 г. до н.э.). Он систематизировал известные до него сведения, и эта система стала в последствии называться формальной или Аристотелевой логикой.
Формальная логика просуществовала без серьезных изменений более двадцати столетий. Естественно, что развитие мат
ематики выявило недостаточность Аристотелевой логики и потребовало дальнейшего развития.
Впервые в истории идеи о построении логики на математической основе были высказаны немецким математиком Г. Лейбницем в конце XVII века. Он считал, что основные понятия логики должны быть обозначены символами, которые соединяются по особым правилам. Это позволит всякое рассуждение заменить вычислением.
«Мы употребляем знаки не только для того, чтобы передать наши мысли другим лицам, но и для того, чтобы облегчить сам процесс нашего мышления» (Лейбниц).
Первая реализация идеи Лейбница принадлежит английскому ученному Д.Булю. Он создал алгебру, в которой буквами обозначены высказывания, и это привело к алгебре высказываний. Введение символических обозначений в логику имело для этой науки такое же решающее значение, как и введение буквенных обозначений для математики. Именно благодаря введению символов в логику была получена основа для создания новой науки – математической логике.
Применение математики к логике позволило представить логические теории в новой удобной форме и применить вычислительный аппарат к решению задач, малодоступных человеческому мышлению, и это, конечно, расширило область логических исследований. К концу XIX столетия актуальное значение для математики приобрели вопросы обоснования ее основных понятий и идей. Эти задачи имели логическую природу и, естественно, привели к дальнейшему развитию математической логики.
Особенности математического мышления объясняются особенностями математических абстракций и многообразием их взаимосвязей. Они отражаются в логической систематизации математики, а доказательстве математических теорем. В связи с этим современную математическую логику определяют как раздел математики, посвященный изучению математических доказательств и вопросов оснований математики.
Методы обоснования математики были развиты Д.Гильбортом и его школой. Они основываются на построении математических теорий как синтаксических теорий, в которых все аксиомы записываются формулами в некотором алфавите и точно указываются правила вывода одних формул из других, то есть в теорию как составная часть входит математическая логика.
Таким образом математическая теория непротиворечивость которой требовалось доказать, стала предметом другой математической теории, которую Гильберт назвал математикой, или теорией доказательств.
В связи с этим возникает задача построения синтаксической, то есть формализованной аксиоматической теории смой математической логике. Выбирая по-разному системы аксиом и правила вывода одних формул из других получают различные синтаксические логические теории. Каждую из них называют логическим исчислением.
Цель дипломной работы: ознакомиться с практическими приложениями алгебры высказываний, а также научиться реализовывать их на практике при решении задач разного типа.
Для достижения цели работы в первой части рассматриваются основные понятия и теоретические сведения, касающиеся данной проблемы:
- логические операции над высказываниями;
- равносильные формулы алгебры высказываний;
- нормальные формы;
- логические следствия.
Во второй части приводится подробное описание и задачи практических приложений, как:
- исследование рассуждений;
- получение логических следствий из данных формул и посылок для данных логических следствий;
- необходимые и достаточные условия;
- анализ и синтез релейно-контактных схем.
1. Элементы алгебры высказываний
1.1 Логические операции над высказываниями
Отрицанием высказывания х называется новое высказывание, которое является истинным, если высказывание X ложно, и ложным, если высказывание X истинно.
Отрицание высказывания X обозначается и читается «не X» или «неверно, что X».
Логические значения высказывания можно описать с помощью таблицы
X |
|
1 |
0 |
0 |
1 |
Таблицы такого вида принято называть таблицами истинности.
Конъюнкцией двух высказываний X, Y называется высказывание, которое считается истинным, если оба высказывания X, Y истинны, и ложным, если хотя бы одно из них ложно.
Конъюнкция высказываний X, Y обозначается символом X&Y или (XÙY), читается «X и Y». Высказывания X и Y называются членами конъюнкции или конъюнктивными элементами.
Логические значения конъюнкции описываются следующей таблицей истинности:
X |
Y |
X&Y |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
Например, для высказываний «6 делится на 2», «6 делится на З» их конъюнкцией будет высказывание «6 делится на 2 и 6 делится на З», которое, очевидно, истинно.
Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.
Дизъюнкцией двух высказываний X, Y называется высказывание, которое считается истинным, если хотя бы одно из высказываний X, Y истинно, и ложным, если они оба ложны.
Дизъюнкция высказываний X, Y обозначается символом XY, читается «X или Y», где «или» используется в неразделительной форме. Высказывания X и Y называются членами дизъюнкции.
Логические значения дизъюнкции описываются следующей таблицей истинности:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах