Практические приложения алгебры высказываний
Находим СКНФ для искомой формулы. Получаем F (Z, V) .
Задача 5. Найти недостающую посылку (формулу) F, зависящую лишь от указанных высказываний, чтобы была верна следующая выводимость:
╞
Решение:
Составим таблицу истинности для формул, являющихся посылками и заключением:
X |
Y |
Z |
|
|
| |
1 1 1 0 1 0 0 0 |
1 1 0 1 0 1 0 0 |
1 0 1 1 0 0 1 0 |
1 1 1 0 1 1 0 1 |
1 0 1 0 1 0 1 1 |
0 1 1 0 1 1 1 1 |
* |
В правом столбце звездочками отметим те строки, в которых обе данные посылки принимают значение 1, а следствие принимает значение 0. Этому требованию удовлетворяет лишь 1-я строка, в которой λ (X) = 1 и λ (Y) = 1. Будем считать, что на других наборах значений высказываний X и Y формула F (X, Y) принимает значение 1. Итак, для искомой посылки F (X, Y) получаем следующую таблицу истинности:
X |
Y |
F(X, Y) |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
Находим СКНФ для искомой формулы. Получаем F (X, Y) .
Задача 5. Найти недостающую посылку (формулу) F, зависящую лишь от указанных высказываний, чтобы была верна следующая выводимость:
╞
Решение:
Составим таблицу истинности для формул, являющихся посылками и заключением:
X |
Y |
Z |
|
|
| |
1 1 1 0 1 0 0 0 |
1 1 0 1 0 1 0 0 |
1 0 1 1 0 0 1 0 |
1 1 1 0 1 1 0 1 |
1 0 1 0 1 0 1 1 |
0 1 1 0 1 1 1 1 |
* |
В правом столбце звездочками отметим те строки, в которых обе данные посылки принимают значение 1, а следствие принимает значение 0. Этому требованию удовлетворяет лишь 1-я строка, в которой λ (X) = 1 и λ (Y) = 1. Будем считать, что на других наборах значений высказываний X и Y формула F (X, Y) принимает значение 1. Итак, для искомой посылки F (X, Y) получаем следующую таблицу истинности:
X |
Y |
F (X, Y) |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
Находим СКНФ для искомой формулы. Получаем F (X, Y) .
Задача 5. Найти недостающую посылку (формулу) F, зависящую лишь от указанных высказываний, чтобы была верна следующая выводимость:
╞
Решение:
Составим таблицу истинности для формул, являющихся посылками и заключением:
X |
Y |
Z |
|
Z | |
1 1 1 0 1 0 0 0 |
1 1 0 1 0 1 0 0 |
1 0 1 1 0 0 1 0 |
0 0 0 1 0 1 0 0 |
1 0 1 1 0 0 1 0 |
* |
В правом столбце отметим строку, в которой данная посылка принимает значение 1, а следствие принимает значение 0. Этому требованию удовлетворяет лишь 6-я строка, в которой λ (X) = 0, λ (Y) = 1 и λ (Z) = 0. Будем считать, что на других наборах значений высказываний X, Y, Z формула F (X, Y, Z) принимает значение 1. Итак, для искомой посылки F(X, Y, Z) получаем следующую таблицу истинности:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах