Практические приложения алгебры высказываний

X

Y

XY

1

1

0

h=42 valign=top >

1

0

0

0

1

0

0

0

1

Отметим, что XY =

Функция сложение по модулю 2 (функция разноименности, или сумма Жегалкина) - функция, принимающая значение истинно, когда X и Y принимают противоположные значения.

X

Y

1

1

0

1

0

1

0

1

1

0

0

0

Отметим, что = .

С помощью логических операций над высказываниями из заданной совокупности высказываний можно строить различные сложные высказывания. При этом порядок выполнения операций указывается скобками. Например, из трех высказываний X, Y, Z можно построить высказывания

(X&Y)Z и X .

Первое из них есть дизъюнкция конъюнкции X, Y и отрицания выказывания Z, а второе высказывание есть импликация, посылкой которой является высказывание X, а заключением - отрицание дизъюнкции высказывания Y и конъюнкции высказываний X, Z.

Всякое сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции, называется формулой алгебры логики.

Высказывания обозначаются большими буквами латинского алфавита А, В, С, …

Для упрощения записи формул принят ряд соглашений. Скобки можно опускать, придерживаясь следующего порядка действий: конъюнкция выполняется раньше, чем все остальные операции, дизъюнкция выполняется раньше, чем импликация и эквивалентность. Если над формулой стоит знак отрицания, то скобки тоже опускаются.

В связи с этим формулы

(X&Y)Z и X

могут быть записаны так:

X&YZ и X .

Логическое значение формулы алгебры логики полностью определяется логическими значениями входящих в нее элементарных высказываний. Например, логическим значением формулы в случае, если X = 1, Y = 1, Z=0 будет истина, то есть = 1.

Все возможные логические значения формулы, в зависимости от значений входящих в нее элементарных высказываний, могут быть описаны полностью с помощью таблицы истинности. Эта таблица будет содержать 2n строк, где n – количество переменных.

Например, для формулы таблица истинности имеет вид:

X

Y

1

1

0

0

1

0

0

1

0

0

1

0

1

1

0

1

1

0

1

0

0

0

0

1

1

1

0

0

Легко видеть, что, если формула содержит n элементарных высказываний, то она принимает 2n значений, состоящих из нулей и единиц, или, что тоже, таблица содержит 2n строк.

1.2 Равносильные формулы алгебры высказываний

Две формулы алгебры высказываний А и В называются равносильными или эквивалентными, если они принимают одинаковые логические значения на любом наборе значений входящих в формулы элементарных высказываний.

Равносильность формул будем обозначать знаком , а запись А В означает, что формулы А и В равносильны.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы