Практические приложения алгебры высказываний
Например, равносильны формулы:
Формула А называется тождественно истинной (или тавтологией), если она принимает значение 1 при всех значениях входящих в нее переменных.
Например, тожественно истинны формулы
Формула А называется тождественно ложной (или противоречием), если она принимает значение 0 при всех значениях входящих в нее высказываний.
Например, тождественно ложна формула .
Формула А называется выполнимой, если она принимает значение 1 при всех значениях входящих в нее высказываний.
Например, выполнима формула .
Ясно, что отношение равносильности рефлексивно, симметрично и транзитивно.
Между понятиями равносильности и операцией существует следующая связь: если формулы А и В равносильны, то формула АВ - тавтология, и обратно, если формула АВ - тавтология, то формулы А и В равносильны.
Важнейшие равносильности алгебры высказываний можно разбить на следующие группы.
1.Равносильности алгебры Буля:
1.Закон двойного отрицания:
2. Коммутативность:
3. Ассоциативность:
4. Дистрибутивность & относительно:
5. Дистрибутивность относительно &:
6. Законы де Моргана:
7. Законы поглашения:
8. Законы идемпотентности:
9. Свойства констант:
10. Закон противоречия:
11. Закон исключения третьего:
2. Равносильности, выражающие одни логические операции через другие:
12.
13.
14.
15.
16.
17.
1.3 Нормальные формы
Основной из задач алгебры высказываний является проблема разрешения, т.е. является ли данная формула тавтологией или противоречием или выполнимой формулой. Эта проблема легко решается с помощью нормальных форм.
Определение 1. Элементарной конъюнкцией п высказываний называется конъюнкция высказываний или их отрицаний.
Определение 2. Элементарной дизъюнкцией п высказываний называется дизъюнкция высказываний илиих отрицаний.
Теорема 1. Чтобы элементарная дизъюнкция была тождественно истинной, необходимо и достаточно, чтобы в ней содержалось два высказывания, из которых одно является отрицанием другого.
Теорема 2. Чтобы элементарная конъюнкция была тождественно ложной, необходимо и достаточно, чтобы в ней присутствовала пара высказываний, из которых одно является отрицанием другого.
Определение 3. Формула равносильная данной и представляющая собой дизъюнкцию элементарных конъюнкций называется дизъюнктивной нормальной формой данной формулы.(ДНФ).
Определение 4. Формула равносильная данной и представляющая собой конъюнкцию элементарных дизъюнкций называется конъюнктивной нормальной формой данной формулы.(КНФ).
Обобщим существование ДНФ или КНФ для каждой формулы:
1. Все логические операции можно заменить тремя: конъюнкцией, дизъюнкцией и отрицанием.
2. Знак отрицания с помощью законов де Моргана можно отнести к пропозициональным переменным.
3. С помощью дистрибутивных законов формула преобразовывается в конъюнкцию элементарных дизъюнкций или дизъюнкцию элементарных конъюнкций.
Для каждой формулы может быть составлено несколько ДНФ и КНФ. Но все ДНФ (или КНФ) данной формулы равносильны между собой.
Определение 5. Совершенной дизъюнктивной нормальной формой формулы А(x1,x2,…,xn) называется ДНФ, обладающая следующими свойствами:
а) в ней нет одинаковых дизъюнктивных элементов;
б) ни одна элементарная конъюнкция не содержит двух одинаковых высказываний;
в) ни какая элементарная конъюнкция не содержит высказывание вместе с ее отрицанием;
г) в каждой элементарной конъюнкции содержится либо Xi, либо , где i=.
Условие а) – г) являются необходимыми и достаточными для того, чтобы ДНФ стала СДНФ. В свою очередь эти условия дают возможность составить алгоритм получения СДНФ из ДНФ:
1) если какая-нибудь элементарная конъюнкция не содержит высказывание Xi, то заменим выражением ;
2) если в полученном выражении окажутся одинаковые элементарные конъюнкции, то лишние опускаются;
3) если в некоторых элементарных конъюнкциях окажутся одинаковые высказывания, то лишние опускаются;
4) удаляем элементарные конъюнкции, в которых содержатся высказывания вместе с их отрицанием.
Если все элементарные конъюнкции окажутся таковыми, т.е. вся формула будет ложной, то она не будет иметь СДНФ.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах