Модель технического объекта

Модель объекта представляется системой алгебраических и дифференциальных уравнений, что обеспечивает возможность моделирования как статических состояний, так и переходных процессов в реальном времени.

Модель многоэлементного объекта в общем случае включает:

- модели технологических подсистем объекта (водяных, гидравлических, воздушных);

- модели электроэнергетической системы объекта

(выработка и распределение электроэнергии);

- модели систем управления объектом, обеспечивающие имитацию как автоматических, так и ручных алгоритмов управления;

- модели состояния технологического оборудования объекта;

- модели развития факторов аварийных ситуаций на объекте (пожар, изменение газовоздушной среды и ряд прочих, специфичных для объекта);

- модели состояния персонала, обслуживающего объект.

Опыт моделирования многоэлементных технических объектов, а также опыт, накопленный в процессе разработки инструментальных средств моделирования и исполнения моделей, может быть использован в довольно широком спектре, для чего необходимо обеспечить:

1. Анализ предметной области и постановку задачи на разработку математического описания объектов данной предметной области;

2. Определение класса моделей, составляющих математическое описание объекта, выработку допущений и ограничений;

3. Возможное проведение экспериментальных исследований на объекте для решения задач идентификации объекта, параметрической настройки моделей, оценку степени адекватности моделей;

3. Разработку инструментальных систем (при необходимости);

4. Разработку (доработку, переработку) систем мониторинга моделируемого объекта;

5. Разработку моделирующего блока;

6. Разработку необходимых баз данных;

7. Экспертную оценку полученных результатов.

При исследовании сложных технических систем с дискретным характером функционирования наиболее широкое применение получили аналитическиеи имитационные методы моделирования.

Одним из основных требований, предъявляемых к модели, является ее адекватность реальной системе, которая достигается за счет использования моделей с различным уровнем детализации, зависящим от особенностей структурно-функциональной организации системы и целей исследования. Процессы функционирования реальных систем невозможно описать полно и детально, что обусловлено существенной сложностью таких систем. Основная проблема при разработке модели состоит в нахождении компромисса между простотой ее описания и необходимостью учета многочисленных особенностей, присущих реальным системам. Попытка построить единую универсальную модель обречена на неудачу, ввиду ее необозримости и невозможности расчета.

Математическое моделирование многоэлементных технических систем должно базироваться на ряде принципов, обеспечивающих корректность и достоверность результатов моделирования и, в конечном счете, качественное проектирование систем.

Среди этих принципов можно выделить три основных принципа:

1) системный подход при решении задач анализа и синтеза;

2) принцип иерархического многоуровневого моделирования;

3) принцип множественности моделей.

В основе исследования многоэлементных технических систем с использованием математического моделирования лежит системный подход, конечной целью которого является системотехническое проектирование, направленное на построение системы с заданным качеством. Для решения задач проектирования необходимо располагать знаниями о том, как влияют различные способы структурно-функциональной организации на характеристики функционирования системы, то есть решать задачи системного анализа.

Принцип иерархического многоуровневого моделирования базируется на иерархическом описании исследуемой системы и процессов, протекающих в них. При этом система и протекающие в ней процессы представляются семейством моделей, каждая из которых описывает поведение системы с точки зрения различных уровней абстрагирования, отличающихся рядом характерных особенностей и параметров, с помощью которых и описывается поведение системы.

Применительно к моделям многоэлементных технических систем с дискретным характером функционирования предлагается выделить два направления иерархии:

1) иерархия по вертикали, в которой деление моделей по уровням осуществляется в зависимости от структурно-функциональных особенностей системы;

2) иерархия по горизонтали, в которой деление моделей по уровням осуществляется в зависимости от методов их исследования.

В иерархии по вертикали, в общем случае, можно выделить три уровня моделей:

 уровень базовых моделей, содержащий простейшие модели, на основе которых строятся и могут быть рассчитаны другие более сложные модели второго и третьего уровней;

 уровень локальных моделей, отображающих отдельные особенности структурно-функциональной организации систем и позволяющих решать частные задачи анализа и синтеза;

 уровень глобальных моделей, наиболее полно отображающих структурные и функциональные особенности организации исследуемых систем и представляющих собой модели с высокой степенью детализации.

Модель используется при анализе движения деталей, соединенных в кинематические группы.

При анализе движения деталей, соединенных в кинематические группы, приходиться опираться на ряд абстракций и допущений, которые приводит к определенным погрешностям, но в то же время позволяют вскрыть принципиальную сущность этих явлений и облегают понимание механизма возникновения упруго – демпфированных колебаний [2, с. 30].

Реальный механизм всегда имеет внутренние степени свободы, связанные с наличием зазоров в кинематических группах. Для диагностирования это обстоятельство является весьма существенным, так как механизм выступает в качестве системы со многими степенями свободы. Точная постановка задачи о движении реального механизма требует составления и решения многомерной системы дифференциальных уравнений, порядок которого равен удвоенному числу степеней свободы организма [1, с. 167].

Первым шагом к упрощению задачи будет рассмотрение относительного движения элементов. Силы, действующие на детали со стороны сопряженных с ней элементов, будем считать заданными.

Элементы механизма во время работы совершают сложные движения, но следует отказаться от попытки проследить движение каждого элемента во всей его сложности. Необходимо сосредоточить внимание только на перемещении элементов относительно друг друга по паразитным степеням свободы.

Наибольший интерес представляет собой относительное движение элементов, соединенных в кинематическую схему – многомассовую систему.

Поведение подобного объекта, описывается системой линейных дифференциальных уравнений:

Страница:  1  2  3  4  5 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы