Анализ существующей на Балаковской АЭС системы очистки трапных вод
Баки трапных вод предназначены для сбора трапных вод всех энергоблоков АЭС. Предусмотрена установка трех баков трапных вод. Трапные воды одного бака перерабатываются на выпарной установке, трапные воды второго бака - контролируются по активности, общему солесодержанию, рН, содержанию различных ионов, окисляемости, третий бак - заполняется.
Трапные воды характеризуются высокой засоленностью
(до 10г/дм ), поэтому очистка ведется в три этапа:
1) дистилляция вод в выпарном аппарате и доупаривателе;
2) конденсация получаемого вторичного пара с одновременной дегазацией образующегося дистиллята;
3) очистка дистиллята на обезмасливающих (угольных) и ионообменных фильтрах.
При переработке трапных вод на выпарной установке следует поддерживать щелочной режим (рН=10,5-11,0). Это определяется следующими причинами:
1) необходимостью снижения опасности образования накипных отложений на поверхности нагрева выпарного аппарата, состоящих из смеси солей кальция СаSO4, СаSiO3, СаСОз с примесью продуктов коррозии и боратов;
2) необходимостью увеличения степени очистки трапной воды отрадионуклидов;
3) необходимостью снижения степени загрязнения дистиллята углекислотой, снижения хлоридной коррозии;
4) необходимостью повышения допустимой степени упаривания растворов доупаривателя;
5) необходимостью перевода борной кислоты, попадающей в трапные воды, в бораты щелочных металлов, обладающих меньшей летучестью и большей растворимостью, чем борная кислота.
Подщелачивание исходной воды производится 5%-ным раствором едкого натра. При повышенной жесткости исходной воды едкий натр вводится совместно с 1%-ным раствором карбоната натрия Na2СОз. Для проведения коагуляции в выпарной аппарат дозируется раствор азотнокислого кальция Са(NO3)2.
Подготовленная трапная вода для очистки из баков трапных вод насосами осветленных трапных вод (9) подается через теплообменник и через нижнюю перепускную трубу в нижнюю часть трубного пространства греющей камеры выпарного аппарата (ВА)(10), поднимается по трубкам до рабочего уровня, нагревается до температуры насыщения и частично испаряется. В межтрубное пространство подается греющий пар давлением 2,5 кгс/см.
Процесс упаривания трапных вод имеет две ступени, что позволяет обеспечить высокие теплотехнические характеристики и снизить общую поверхность теплообмена установки, а также получить вторичный пар высокого качества.
Рисунок 2.1.1 - Принципиальная схема переработки трапных вод СВО-3
Паро-газо-водяная смесь через верхнюю перепускную трубу попадает в сепаратор (11) выпарного аппарата, в котором в результате резкого снижения скорости движения происходит объемная сепарация основной массы капель воды. В результате их укрупнения и слияния вода стекает в нижнюю часть сепаратора и по нижней перепускной трубе возвращается в греющую камеру.
Вторичный пар поднимается вверх и проходит через жалюзийный отбойник, на котором в результате многократного изменения направления потока пара происходит дальнейшее отделение капель влаги из пара. При этом влагосодержание пара снижается на 85%.
После прохождения жалюзийного отбойника пар промывается на барботажной тарелке посредством барботажа через непрерывно обновляющийся, за счет стекающей флегмы с насадки из колец Рашига, слой воды, чем обеспечивается первая ступень промывки. С барботажной тарелки вода сливается в нижнюю часть аппарата и смешивается с концентратом. Верхний конец трубки выступает над тарелкой на 50 мм, чем обеспечивается постоянный уровень воды на тарелке.
Вторая ступень промывки пара в ВА осуществляется на насадке из колец Рашига. В верхнюю часть насадки подается промывочная вода - флегма.
В качестве флегмы используется часть конденсата вторичного пара, отводимого в ВА насосами дегазированной воды (16).
Нижняя часть насадки постоянно залита водой, слой которой регулируется путем перетока избытка флегмы через выносной гидрозатвор - на барботажную тарелку.
При увеличении вязкости упариваемого раствора может происходить вспенивание промывочной воды на барботажной тарелке, что вызывает значительное загрязнение пара. Гашение пены достигается увеличением расхода флегмы или подачей на барботажную тарелку 1% раствора пеногасителя, который разрушает пену посредством уменьшения поверхностного натяжения паровых пузырьков.
Упаренный раствор постепенно самотеком перетекает из ВА в доупариватель (12). Такое перетекание достигается более низким расположением доупаривателя.
В доупаривателе раствор дополнительно упаривается. При достижении солесодержания 200-400г/л производится слив кубового остатка самотеком в монжюс (14), откуда сжатым воздухом давлением 6 кгс/см выгружается в емкости кубового остатка промежуточного узла хранения жидких отходов (ХЖО).
Сброс кубового остатка происходит автоматически по температурной депрессии - увеличению температуры кипения концентрата над температурой насыщения при рабочем давлении в доупаривателе.
Генерируемый пар проходит очистку на каплеотбойной колонке и жалюзийном отбойнике сепаратора доупаривателя и подается под барботажную тарелку выпарного аппарата.
Подача пара осуществляется путем поддержания в доупаривателе более высокого давления, чем в выпарном аппарате.
Из сепаратора выпарного аппарата 90% осушенного и промытого пара поступает в межтрубное пространство горизонтального кожухотрубного теплообменника конденсатора - дегазатора (15), где происходит его конденсация, обеспечивая первую ступень дегазации. По трубкам этого теплообменника циркулирует охлаждающая вода.
Конденсат пара падает струями вниз, промываясь во время движения свежими порциями пара, скапливается внизу на дырчатом листе и по центральному патрубку переливается через дегазационную колонку в конденсатосборник конденсатора - дегазатора.
Оставшиеся 10% пара из ВА через патрубок подаются под дырчатый лист конденсатора и барботируют через слой скапливающегося дистиллята, обеспечивая вторую ступень дегазации.
Третья ступень дегазации обеспечивается посредством кипения воды в конденсатосборнике. Источником тепла является греющий пар, который подается в змеевик испарителя конденсатосборника.
Образующийся при кипении пар поднимается вверх по дегазационной колонке, омывает поток основного конденсата, стекающего пленкой по поверхности насадки и нагревает его до температуры насыщения.
Выделившиеся газы поднимаются через центральный патрубок вверх и с частью пара удаляются через линию сдувки из пространства конденсатора -дегазатора на дефлегматор сдувок (17).
Сдувка из конденсатора - дегазатора подается в межтрубное пространство дефлегматора, где происходит конденсация пара и отделение конденсата от несконденсировавшихся газов. В трубном пространстве циркулирует охлаждающая до 30°С вода.
Несконденсировавшиеся газы подаются для дополнительной очистки на фильтр "Фартос", а конденсат возвращается в конденсатор - дегазатор.
Другие рефераты на тему «Производство и технологии»:
- Разработка технологического процесса изготовления передней крышки водомасляного радиатора
- Анализ композиционных элементов конструкции одежды. Разработка модельных конструкций женской и мужской одежды по заданному эскизу
- Календарное планирование на производстве
- Классификация ткацких станков
- Ковка и штамповка изделий
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды