Анализ существующей на Балаковской АЭС системы очистки трапных вод

Графически определяем при =44,56°С q=631281 Вт/м2 .

Коэффициент теплопередачи конденсатора:

Площадь поверхности теплообмена:

3.5.3 Расчет охладителя конденсата

Из конденс

атора-дегазатора выходит 1,585кг/с дистиллята, 0,25кг/с дистиллята подается в виде флегмы в выпарной аппарат. Дегазированный дистиллят поступает в корпус охладителя в количестве 1,335кг/с и имеет следующие параметры: Рд=0,12МПа t/д=104°С, температура дистиллята на выходе из охладителя t//д =50°С.

Схема движения теплоносителей прямоточная.

В трубках циркулирует охлаждающая вода: t/в=25°С, t//в=45°С. Средняя температура воды

tв.ср=0,5(t/в + t//в)=0,5(25+45)=35°С.

Средняя разность температур: при прямотоке

=104-25=79 =50-45=5;

°С

Средняя температура дистиллята в корпусе:

tд.ср=tв.ср+tср=35+26,81=61,81°С.

Тепловой баланс охладителя конденсата [14,с.18]:

Qохл=GдCд(t/д- t//д)= GвCв(t/в- t/в),(3.5.3.1)

где Gд - расход дистиллята;

Cд - удельная теплоёмкость дистиллята, Cд =4180Дж/(кг*К);

Gв - расход охлаждающей воды;

Cв - удельная теплоёмкость воды,

Св=4174Дж/(кг*К);

Qохл=1,335 *4180(104-50)=301336 Вт.

Расход охлаждающей воды:

Определим коэффициент теплопередачи графоаналитическим методом. По формуле Нуссельта среднее значение коэффициента теплоотдачи для дистиллята: примем Н=4м;

Поверхностная плотность теплового потока от дистиллята к стенке

Вт/м2.

Охладитель выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/21мм, толщина стенки 2мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.

Поверхностная плотность теплового потока через стенку трубы:

Поверхностная плотность теплового потока через накипь:

Поверхностная плотность теплового потока от стенки к воде:

Вт/м2,

для вертикальных труб =0,627Вт/(м*К);

= 1,5м/с - принятая скорость в трубах;

=0,732* 10-6 м2/с - кинематическая вязкость воды при tв=35°С;

104<Rе<106, движение турбулентное;

(3.5.3.2)

где Prв=4,87;

=1 - поправка, учитывающая отношение l/d трубки.

6590 Вт/(м2К).

Графически определяем при =26,81°С q=22306 Вт/м2.

Коэффициент теплопередачи охладителя:

Площадь поверхности теплообмена:

3.6 Анализ теплотехнических расчетов

В настоящее время для очистки трапных вод с энергоблоков 1-4 на Балаковской АЭС применяются три выпарные установки: две в работе, одна в резерве.

Фактические поверхности теплопередачи выпарного аппарата и доупаривателя составляют:

Fф.ВА= 160*3=480 м2Fф.ДУ=20*3=75 м2

Расчетные поверхности теплопередачи выпарного аппарата и доупаривателя составляют:

Fр.ВА=131,22*3=393,66 м2Fр.ДУ=13,18*3=39,54м2

Проведенные расчеты показывают, что при переработке трапных вод с шести энергоблоков АЭС запас площади поверхности теплопередачи составит:

FВА= Fф.ВА - Fр.ВА=480-393,66=86,34м2 (18%)

FДУ= Fф.ДУ - Fр.ДУ=75-39,54=35,46м2 (47,3%)

Аналогично для конденсатора-дегазатора:

Fф.К=50,3*3=150,9 м2Fр.К=35,99*3=107,97 м2

FК= Fф.К - Fр.К=150,9-107,97=42,93м2 (28,4%)

Fф.И=0,55*3=1,65 м2Fр.И=0,53*3=1,59 м2

FИ= Fф.И - Fр.И=1,65-1,59=0,06 м2 (3,64%)

Для дефлегматора сдувок:

Fф.ДФ=5*3=15 м2Fр.ДФ=4,26*3=12,78 м2

FДФ= Fф.ДФ - Fр.ДФ=15-12,78=2,22м2 (14,8%)

Для охладителя конденсата:

Fф.охл=20*3=60 м2Fр.охл=13,5*3=40,5 м2

Fохл= Fф.охл- Fр.охл=60-40,5=19,5м2 (32,5%)

Следовательно, действующая в настоящее время установка обеспечит выпаривание трапных вод с шести энергоблоков Балаковской АЭС со значительным запасом площади поверхности теплопередачи.4 КИП и автоматизация

Автоматические системы управления технологическими процессами обеспечивают оптимальные условия эксплуатации оборудования в предпусковой период, при пуске, эксплуатации и останове энергоблока, удобство обслуживания и повышают безопасность работы энергоблоков АЭС.

Требования, предъявляемые к приборам и средствам автоматизации на установке спецводоочистки трапных вод АЭС, в первую очередь определяются свойствами агрессивных сред, параметры которых измеряются. Необходимо учитывать температуру и концентрацию веществ, вызывающих коррозию, радиоактивность, влажность помещения, наличие пыли. Влияние концентрации и температуры сред учитывается при выборе соответствующих материалов для датчиков (например, чехлы термометров, диафрагмы, расходомеров, соприкасающихся со средой).

Чтобы избежать коррозии щитовых средств контроля и автоматизации, а также сохранить эксплуатационные характеристики в условиях запыленности и загрязненности атмосферы производственных помещений, необходима максимальная централизация их с очисткой и кондиционированием воздуха, подаваемого в диспетчерские пункты.

Для снижения расхода средств на автоматизацию в проекте предлагается использование приборов ГСП (Государственной системы приборов), что позволит реализовать принцип взаимозаменяемости приборов, их централизацию (меньшее количество диспетчерских пунктов). Кроме того, это повысит безопасность обслуживания оборудования.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы