Страница
1
Содержание
1 Цель работы и решаемые задачи
2 Объект исследования
3 Динамическая система и метод расчета
3.1 Допущения по расчетной модели
3.2 Источник возмущений
3.3 Метод расчета и уравнения колебаний системы
3.4 Структура физико-математической модели динамической системы и ее топологическая модель
4 Инерционно-топологическая модель вагона
4.1 Характеристика инерционно-топологической подсистемы
4.2 Характеристики инерции
4.3 Математическая инерционная модель
5 Виброзащитная модель динамической системы
5.1 Характеристики рессорного подвешивания двухосной тележки грузового вагона
5.2 Нагруженность системы силами упругости и реакциями сил упругости
5.3 Математическая модель виброзащитной системы вагона
6 Внешняя нагруженность динамической системы
6.1 Физическая модель нагруженности вагона
6.2 Математическая модель внешних возмущающих нагрузок
6.3 Математическая модель динамики вагона на рессорах
7 Свободные колебания вагона на рессорах
7.1 Уравнения свободных колебаний вагона
7.2 Определение частот свободных колебаний
7.3 Формы колебаний вагона
8 Вынужденные колебания вагона на рессорах
8.1 Резонансные колебания кузова вагона
8.2 Определение параметров гасителей колебаний
Литература
1 Цель работы и решаемые задачи
Целью работы является:
- изучение метода расчета динамической системы;
- исследование колебаний вагона на рессорах.
Решаемые задачи:
- определение характеристик расчетных моделей подсистем;
- изучение свободных и вынужденных колебаний;
- определение параметров гасителей рессорного подвешивания вагона.
2 Объект исследования
Объектом исследования является модель крытого вагона 11-066 с одинарным рессорным подвешиванием.
Таблица 2.1
Характеристика задания
№ вар |
Тип вагона и его модель |
Степень загрузки |
Число пружин в рессорном комплекте |
Неровность (П,К) | ||
по массе |
по объему |
амплитуда , мм |
длина волны , м | |||
1 |
11-066 |
1 |
1 |
7 |
8 |
12,5 |
Таблица 2.2
Параметры модели кузова и груза
Название элемента |
Обозначение параметра |
Значение |
Внутренние размеры кузова, мм: – длина; – ширина; – высота по боковой стене |
L B H |
13844 2760 2791 |
База модели, мм |
2l |
10000 |
Размеры элементов кузова, мм: – толщина торцевой стены; – толщина боковой стены; – высота рамы. |
aT aБ hp |
20 20 360 |
Поперечное расстояние между осями рессорного подвешивания, мм: |
2b |
2036 |
Массы вагона (тары), кг; |
MВ |
22000 |
Масса груза, кг; |
MГ |
68000 |
Масса тележки, кг; |
MТ |
4800 |
Масса надрессорной балки, кг; |
MНБ |
600 |
3 Динамическая система и метод расчета
3.1 Допущения по расчетной модели
При выборе динамической расчетной модели принимаем следующие допущения:
· динамическую систему представляем в виде системы твердых тел;
· полагаем, что в рессорном подвешивании отсутствуют диссипативные силы сухого и вязкого трения, система вследствие этого будет являться консервативной;
· грузы рассматриваем как твердые тела с жестким присоединением к кузову вагона;
· рессорные комплекты тележек имеют линейную силовую характеристику;
· путь считаем абсолютно жестким.
3.2 Источник возмущений
В качестве источника возмущения принимаем гармоническую неровность первого вида:
,(3.1)
где - частота изменения гармонической неровности:
,(3.2)
- скорость движения вагона.
3.3 Метод расчета и уравнения колебаний системы
Физическая модель метода расчета
Для расчета системы используем метод реактивных усилий. Колебания кузова в пространстве определяем по движению центра масс кузова : тремя линейными и тремя угловыми его перемещениями по направлению координатных осей кузова (рисунок 4.1).
Движение всех других частей кузова находим по колебаниям центра масс кузова и координатам этих частей, .
Узел , движение которого будем изучать, условимся называть центрально-координатным узлом.
Центрально-координатный узел полагаем имеет внутренние линейные и угловые связи по направлению координатных осей . Считаем, что все усилия, действующие на рассматриваемое тело, через внутренние элементы-вставки передаются в связи центрально-координатного узла и здесь взаимно уравновешиваются на основании принципа Лангранжа-Деламбера.