Перспективы развития автомобильных двигателей, работающих на водороде
1.2. Получение водорода
В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёва
я избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).
В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).
Получение водорода осуществляется в три стадии. Первая стадия - конверсия метана в трубчатой печи:
CH4 + H2O = CO + 3H2 - 206,4 кДж/моль
или
CH4 +CO2 = 2CO + 2H2 - 248, 3 кДж/моль.
Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).
CH4 + 0,5O2 = CO + 2H2 + 35,6 кДж/моль.
И, наконец, третья стадия - конверсия оксида углерода водяным паром:
CO + H2O = СO2 + H2 + 41,0 кДж/моль.
Для всех указанных стадий требуется водяной пар, а для первой стадии - много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.
Электролиз - получение водорода из воды путем пропускания через неё мощной электрической искры. Остальные способы технически невозможны, либо ещё дороже, чем и без того дорогой электролиз. Для получения очень малого количества водорода путем электролиза требуется огромное количество электрической энергии, что делает водород слишком дорогим.
Глава 2. Перспективы в автомобилестроении
2.1. Двигатель внутреннего сгорания работающий на водороде
Топливный кризис 70-х годов заставил многие автомобильные компании по-новому взглянуть на альтернативные виды горючего. Тогда-то и был отмечен первый всплеск интереса к водороду. А что, этот "кандидат" выглядел вполне многообещающе. Водорода на Земле – море. В прямом смысле слова, ведь его можно получать из воды. Однако вскоре кризис пошел на убыль, нефтепроводы заработали на полную мощность, а водородные проблемы были, на первый взгляд, отодвинуты в дальние углы академических лабораторий. Однако прошло двадцать лет, и теперь эти исследования, похоже, обрели второе дыхание – они оказались созвучны современным "экологическим" настроениям. Действительно: сжигаем водород – получаем воду. Как ни взгляни – вполне нейтральный и безвредный продукт.
Как всегда, в новом и перспективном деле множество вариантов. Единообразие придет потом, а пока выбор довольно велик. Самое простое – вместо бензобака разместить на автомобиле баллоны со сжатым водородом. Подходящая аппаратура уже существует – ведь в мире немало автомобилей работает на сжатом газе. Правда, природном, но приспособить эти устройства относительно легко. Конечно, и сам двигатель придется переделывать, но об этом чуть позже. Такой путь, хотя и кажется простым, все-таки маловероятен. Трудно представить водителя, который добровольно согласится возить емкости со сжатым до 200 кгс/см² водородом, к тому же способным коварно проникать через мельчайшие неплотности топливной аппаратуры. В чем намного превосходит природный газ, состоящий из более "тяжелых и неповоротливых" молекул и потому менее склонный к утечкам. А еще каждый, безусловно, припомнит "гремучий газ" – взрывоопасную смесь водорода с кислородом в объемном соотношении 2:1. Не более перспективным выглядит и сжиженный водород. Кому захочется иметь дело с топливом, которое нужно хранить при –253°С? И на какие технические ухищрения придется идти конструкторам, чтобы поддерживать такой холод сколько-нибудь длительное время? Итак, этот вариант пока тоже отпадает.
К счастью, есть еще одна возможность – гидриды. Напомним, что атомы металлов располагаются в определенном порядке, их "построение" называют кристаллической решеткой. Так вот, некоторые металлы и сплавы способны "разместить" между своими атомами и атомы водорода. Такие "сообщества" и называют гидридами. Так размещаются атомы водорода в кристаллической решетке металла (рис.2.1.1).
Рисунок 2.1.1. Кристаллическая решетка гидрида
Не вдаваясь в подробности, заметим, что емкость подобного "хранилища" (при равном объеме устройства) впятеро выше, чем у баллона со сжатым газом, и почти вдвое – чем у Дьюара со сжиженным. Исследователи настойчиво ищут наиболее походящие сплавы, но уже известно, что наилучшей основой для них является титан. Гидридные накопители штука довольно сложная, и, естественно, они не состоят из цельного куска металла, а больше напоминают губку со множеством каналов – для скорейшего поглощения и выделения водорода. Последнее происходит при нагреве гидридов, а уж источник тепла на автомобиле долго искать не нужно – скажем, для этой цели вполне подойдут горячие выхлопные газы. Еще одна важная черта гидридов – они стократ безопаснее других способов хранения водорода. Правда, для автомобильного транспорта емкость и у них маловата, а вес и сложность устройства, напротив, велики. Резонно задать вопрос: если хранение вызывает такие трудности, нельзя ли получать водород непосредственно на автомобиле? Оказывается, можно. Самым перспективным считается способ, при котором сырьем служит метанол, или, по старой российской классификации, метиловый спирт. Применяется довольно широко – даже входит в состав большинства автомобильных жидкостей для мытья стекол.
Итак, бак автомобиля – по сути, вполне обычный – наполняют легкой жидкостью с резким спиртовым запахом. Отсюда она попадает в реактор, испаряется и в присутствии катализатора реагирует с водяным паром, выделяя водород и двуокись углерода. Топливо получено, осталось его использовать. Кстати, можно провести реакцию другим способом, тогда вторым из продуктов окажется не СО2, а СО (тот самый, с которым борются экологи); смесь последнего с водородом получила название синтез-газ. Поскольку Н2 и СО горючи, их можно вместе непосредственно сжигать в цилиндрах двигателя внутреннего сгорания (рис. 2.1.2.).Подобные эксперименты проводились во множестве лабораторий.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск