Эмисионная электроника

Электроны частично заполненных зон в силу квазинепрерывности зон могут увеличивать энергию и участвовать в направленном движении под действием сколь угодно слабых полей. Это проводники.

Собственные и примесные полупроводники

Чистый полупроводник, в котором отсутствуют примеси, называется собственным полупроводником. Однако практически создать решетку без примесей невозможно. В реальных

кристаллах правильность структуры нарушается за счет всевозможных дефектов, поэтому собственные полупроводники в чистом виде встречаются редко. Чаще всего имеем дело с примесными полупроводниками. В решетке присутствуют или примеси, или дефекты.

Основная зонная диаграмма не меняется, только дополнительно возникают локальные состояния электронов и локальные энергетические уровни (примесные уровни), попадая на которые электроны не перемещаются по кристаллу, а сосредотачиваются вблизи дефекта. Эти примесные уровни обычно изображаются черточками. Когда примесей много, могут образовываться примесные зоны.

Рис. 2.8 – Донорный полупроводник:

а) образование донорного электрона; б) энергетическая диаграмма

В зависимости от типа примесных атомов и вещества основного кристалла различают два вида примесных полупроводников. Проследим образование их. Допустим, что в четырехвалентную решетку германия вносятся атомы мышьяка – As (рис. 2.8).

Каждый атом германия связан с четырьмя ближайшими соседями силами ковалентной связи и выделяет на установление каждой связи по одному из четырех валентных электронов. Замещение одного атома германия пятивалентным атомом As приводит к тому, что один электрон не будет участвовать в установлении ковалентной связи, а останется на эллиптической орбите вокруг примесного иона, охватывая своим движением несколько атомов решетки. Теперь достаточно сообщить электрону As энергию порядка 0,01 эВ, чтобы оторвать его от атома и превратить в свободный электрон, участвующий в электропроводности.

С точки зрения зонной теории, атому As соответствует появление локального энергетического уровня, расположенного в запрещенной зоне примерно на 0,01 эВ ниже зоны проводимости (рис. 2.8, б). Примесные уровни As заполнены электронами, которые под действием внешнего возбуждения могут перейти в зону проводимости. Такие примесные уровни, передающие электроны в зону проводимости, называются донорными уровнями, а полупроводник – донорным ( полупроводник п-типа).

Рис. 2.9 – Акцепторный полупроводник:

а) образование незавершенной связи; б) энергетическая диаграмма

Введение в четырехатомную решетку германия трехвалентного индия создает другой тип полупроводника. Три валентных электрона не могут обеспечить ковалентные связи с четырьмя атомами германия, и одна связь остается незаполненной. Однако один электрон может перейти в эту связь, а на его место - другой соседний и т.д. Следовательно, вакансия электронов подвижна и может передвигаться по решетке. На зонной диаграмме (рис.2.9, б) примесь индия приводит к появлению локальных незаполненных уровней вблизи валентной зоны (0,01 эВ), на которые могут перейти электроны под действием внешнего возбуждения, причем в валентной зоне образуются дырки, обеспечивающие механизм электропроводности. Подобные уровни – акцепторные, а полупроводники – дырочные, или р-типа.

Захватывая электрон валентной зоны, атом акцепторной примеси превращается в отрицательный ион. Перемещаться в кристалле под действием электрического поля он не может, так как прочно удерживается в узле кристаллической решетки ковалентными связями с другими атоматами.

Плотность энергетических уровней

Для того чтобы знать, как распределяются по энергиям электроны в кристалле, надо установить, как распределены внутри зон разрешенные квантовые состояния, а во-вторых, как они заполняются электронами, т.е. вероятность их заполнения.

Концентрацию электронов, имеющих энергии, заключенные в интервале от Е до Е+dЕ, можно представить так:

где – функция плотности энергетических состояний;

– вероятность заполнения энергетических уровней зарядоносителями.

где – энергия электрона, отсчитанная от границы зоны;

– эффективная масса электрона, учитывающая энергетическую связь его с полями частиц кристалла;

– элементарная ячейка пространства импульсов.

Электронный газ в металлах всегда вырожден. Реальные температуры катодов около 2000° С. В этом случае используют распределение Ферми-Дирака:

, (1)

где – энергия или уровень Ферми

При этом уравнение концентрации электронов принимает вид:

Проанализируем это уравнение. При Т = О и Е > ЕF первый член знаменателя обращается в бесконечность, а вероятность заполнения электронами энергетических уровней (WE) и соответственно вся правая часть уравнения оказывается равной нулю.

Следовательно, при температуре абсолютного нуля в металле нет электронов с энергией больше ЕF.

При Т = О и Е < ЕF первый член знаменателя - нуль, вероятность заполнения электронами энергетических уровней (WE) оказывается равной единице и кривая распределения электронов по энергиям (кривая Т=0 на рис. 2.10) представляет собой обратную параболу.

Итак, у металлов константа ЕF имеет простой и наглядный физический смысл: это наибольшая энергия, которой обладают электроны при температуре абсолютного нуля.

При Т > О и Е = ЕF получим

и

В результате приходим к очень важному для последующего изложения выводу, применимому не только к металлам, но также к диэлектрикам и полупроводникам: уровень Ферми – это такой уровень, вероятность заполнения которого электронами при любых температурах равна 1/2.

При Т > О и Е < ЕF величина (WE) несколько меньше единицы. Вместе с тем для энергий Е > ЕF появляется некоторая отличная от нуля вероятность заполнения энергетических уровней. Распределение валентных электронов металла по энергиям при Т > О соответствует кривой на рис. 2.10.

Рис. 2.10 – Распределение электронов по энергиям в металле

Вопросы распределения по энергиям носителей заряда в полупроводниках будут рассматриваться позднее. Мы же остановимся на вопросе расположения уровня Ферми в кристаллах.

В проводниках уровень Ферми располагается на уровне перехода из зоны проводимости в валентную зону.

У диэлектриков и собственных полупроводников уровень Ферми располагается в середине запрещенной зоны и практически не зависит от температуры.

У донорного полупроводника уровень Ферми при Т = О располагается посередине между донорным уровнем и дном зоны проводимости, а при повышении температуры он смещается вниз, причем тем сильнее, чем меньше концентрация донорной примеси.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы