Мартенситное превращение
Ориентированный когерентный рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию растущих кристаллов мартенсита и обусловливает термодинамическую экономичность процесса.
При когерентном росте кристалла мартенсита ввиду значительного различия в объемах аустенита и мартенсита возникают большие напряжения как в кристаллах аустенита, так и в кристаллах мартенсита. При дости
жении определенной величины мартенситного кристалла эти напряжения достигают значения предела текучести аустенита. Поэтому в последнем происходит пластическая деформация, приводящая к нарушению когерентной связи решеток и отрыву решетки мартенсита от решетки аустенита (рис. 3, б), вследствие чего дальнейший рост мартенситного кристалла прекращается.
Специфические особенности сдвигового механизма роста мартенситных кристаллов объясняют особенности мартенситного превращения стали при закалке.
Такими особенностями являются: 1) бездиффузионный механизм 2) ориентированность мартенситных кристаллов относительно старой фазы; 3) очень большие скорости роста (порядка 10 .1000 м/с) мартенситных кристаллов; 4) необратимость мартенситного превращения; 5) Очень ограниченное протекание процесса в изотермических условиях и необходимость непрерывного охлаждения для развития процесса.
5. Механические свойства стали с мартенситной структурой
В табл. 2 приведены механические свойства стали 40 (0,4 % С) после термообработки (отпуска, закалки и отпуска).
Таблица 2
Структура и характер термообработки |
Механические свойства | ||||
σв, МПа |
σт, МПа |
НВ |
δ, % |
Ψ, % | |
П+Ф(отжиг) |
600 |
250 |
140 |
33 |
55 |
Мартенсит (закалка) |
1400 |
1100 |
570 |
2 |
3 |
Отпуск при 600°С (сорбит отпуска) |
620 |
410 |
170 |
20 |
64 |
Как видно из табл. 2, характерными свойствами стали с мартенситной структурой являются высокая твердость и малая пластичность. Установлено, что твердость мартенсита зависит от содержания углерода в стали и мало изменяется от наличия легирующих элементов (рис. 7)
Рис. 7. Влияние содержания углерода на твердость HRC мартенсита.
Хрупкость стали увеличивается с увеличением содержания углерода укрупнением мартенситных игл. Последняя имеет место при закалке стали с крупным зерном аустенита.
Высокую твердость мартенсита Г. В. Курдюмов объясняет мелкоблочным строением мартенситных кристаллов, границы которых сильно затрудняют перемещение дислокации.
Сильно развитая блочная структура закаленной малоуглеродистой стали является основной причиной её высокой статической прочности; роль углерода в этом незначительна. В высокоуглеродистой стали упрочняющая роль углерода весьма велика.
Установлено, что в закаленной малоуглеродистой стали при деформации дислокации некоторых типов отличаются большой подвижностью; они способствуют деформации стали без образования при этом трещин.
В кристаллах мартенсита высокоуглеродистой стали установлено образование двойников. Считается, что у этих сталей барьерами для дислокаций являются границы двойников, перед которыми дислокации скапливаются и создают очаг зарождения трещины. Этим объясняется высокая хрупкость закаленной высокоуглеродистой стали. Атомы углерода в решетке мартенсита оказывают дополнительное сопротивление движению дислокаций и, главное, придают температурную зависимость. Этим объясняют склонность закаленной углеродистой стали к хладноломкости.
Эти выводы имеют существенное значение при создании новых высокопрочных безуглеродистых сплавов типа мартенсито-стареющих, в которых высокий комплекс прочности и вязкости достигается мартенситной структурой, в которой отсутствует тормозящая роль примесей внедрения(в частности, углерода).
Наличие в структуре высокоуглеродистых и некоторых легированных сталей большого количества остаточного аустенита уменьшает твердость, износостойкость и прочность стали. Остаточный аустенит Аост оказывает отрицательное влияние и на некоторые другие свойства (уменьшается стабильность размеров деталей, ухудшается шлифуемость и т. д.).
Вязкость закаленной углеродистой стали невелика из-за неоднородности мартенсита, что приводит к концентрации напряжений. Вследствие этого возможно образование микротрещин, накопление которых приводит к потере пластичности и к хрупкому разрушению стали.
Легирование стали, как правило, сопровождается повышением однородности структуры, благодаря чему повышается истинная пластичность е и возрастает сопротивление вязкому разрушению SК. Этим же определяется повышение сопротивления хрупкому разрушению Sот легированных сталей в закаленном состоянии.
Сопротивление отрыву Sот закаленной стали резко понижается с увеличением содержания углерода. Так, при С=0.42 % сопротивление отрыву Sот = 1740 МПа, а при С=0.77 % составляет Sот = 630 МПа.
Заключение
В заключении мы можем сделать вывод о том, что мартенсит – структура, сильно отличающаяся по свойствам и строению от других продуктов превращений в сталях, при различных видах термообработки. Мартенситное превращение это основная цель такого технологического процесса как, закалка (или закалка на мартенсит), которая производится для повышение твёрдости, прочности и износостойкости, а также для подготовки к отпуску. Поэтому сложно недооценивать важность того как и при каких условиях происходит мартенситное превращение, это знание позволяет нам получать стали с нужными нам свойствами.
Список используемой литературы
1. Мозберг Р.К. Материаловедение: Учеб. пособ. – 2-е издание., перераб – Москва Высш. шк., 1991. – 448с.
2. Г.П. Фетисов, М.Г. Карпман В.М. Матюнин и др. Материаловедение и технология металлов – Москва Высш. шк., 2000. – 639с.
3. Лахтин Ю. М., Леонтьева В.П. Материаловедение: Учебник для ВТУЗов – 3-е изд., перераб. и доп. – Москва: Машиностроение, 1990 – 528с.
4. Арзамасов Б.Н., И.И. Сидорин, Г.Ф. Косолапов и др. Материаловедение: Учебник для ВТУЗов . – 2-е издание., испр. и доп. – Москва.: Машиностроение, 1986. – 384с.
Другие рефераты на тему «Производство и технологии»:
- Линия производства варенных колбас из мяса птицы с расчетом вакуумного шприца КОМПО-ОПТИ 2000-01
- Конструирование узлов и деталей ткацкого станка
- Классификация технологических процессов обработки изделий в машиностроении
- Гидравлический расчет технологического трубопровода, подбор насоса
- Замкнутые системы управления
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды