Мартенситное превращение
Введение
Для того, чтобы наиболее полно разобраться в том, что же такое мартенситное превращение, думаю, нам следует начать с определения, что же такое мартенсит, даваемого повсеместно в словарях и энциклопедиях.
Мартенсит — микроструктура игольчатого вида, наблюдаемая в закалённых металлических сплавах и в некоторых чистых металлах, которым свойствен полиморфизм. Назван в чест
ь немецкого металловеда, одного из основоположников исследований по усталости материалов, Марка Адольфа Мартенса (А. Martens; 1850—1914гг.). Мартенсит — основная структурная составляющая закалённой стали; представляет собой упорядоченный пересыщенный твёрдый раствор углерода в α-железе.
Мартенситное превращение, наиболее интересная стадия превращения аустенита в сталях.
Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. До тех пор пока, ученые не смогли наиболее глубоко изучить и описать этот процесс, существовало много различных не уясненных, непонятных и не объяснимых на тот момент процессов происходящих при превращении А→М.
1. Диаграмма изотермических превращений аустенита
С целью уяснения процессов происходящих в сталях, и влияние различных температур на аустенит и на строение и свойства получающихся при его распаде продуктов рассмотрим диаграмму его изотермических превращений, т.е. таких превращений, которые происходят при постоянных температурах, лежащих ниже точки A1.
Диаграмма изотермических превращений аустенита эвтектоидной стали (0,8% С) имеет простой вид (рис. 1). Диаграмма представлена двумя кривыми (их принято называть С-кривыми). Она составлена в координатах время — температура изотермической выдержки. Время откладывается в логарифмической шкале (для укорочения последней, так как отсчет ведется в секундах).
Рис.1. Диаграмма изотермических превращений аустенита(0.8% С).
Собственно диаграмма заключена между двумя критическими изотермами, из которых изотерма A1 соответствует равновесному превращению аустенит—перлит, а изотерма Mн – началу интересующего нас мартенситного превращения.
В различных областях диаграммы происходят различные процессы.
Например: В верхней части выше выступов С-кривых образуется наиболее крупнопластинчатая, грубодисперсная смесь Феррит + Цементит. Всю область выше выступов принято называть сокращенно ПСТ (Перлит – Сорбит - Тростит).
Распад аустенита в области температур ниже выступа происходят при явно недостаточной скорости диффузионных процессов. Это в данной области является доминирующим обстоятельством, предопределяющим характер формирования образующихся при распаде продуктов, называемых бейнитами в честь американского ученого Бейна, впервые исследовавшего изотермические превращения аустенита, скорость работы механизма формирования новых фаз в этих условиях полностью зависит от интенсивности диффузии. При Мн диффузия прекращается полностью.
Таким образом, при распаде аустенита в нижней температурной области диаграммы изотермических превращений (см. рис. 111) образуется смесь пересыщенного твердого раствора углерода в α-Fe и специфического карбида железа: Ф' + Ц', тем более отличающаяся от смеси Ф + Ц, чем ниже температура превращения.
По мнению ряда исследователей, при бейнитном превращении из аустенита предварительно выделяется какое-то количество углерода, в результате чего образуются частицы карбида железа. Несколько обедненный при этом аустенит затем превращается в пересыщенный твердый раствор углерода в α-Fe— мартенсит М. Разберемся в том, как это происходит и при каких условиях.
2. Мартенситное превращение
Если переохладить аустенит до точки Mн, то начнется так называемое мартенситное превращение, происходящее при непрерывном охлаждении в интервале температур от точки Мн„ до точки Мк, лежащей ниже О °С при С > 0,8%.
Интервал температур Mн …Mк зависит от количества углерода в аустените стали (рис.2)
Так при содержании углерода больше 0.6% точка Мн находится в области отрицательных температур. Скорость охлаждения практически не влияет на температуру Мн и Мк.
Рис. 2.Влияние содержания углерода на положение мартенситных точек Мн и Мк.
Минимальная скорость охлаждения Vk, при которой весь аустенит переохлаждается до температуры точки Mн, и превращается в мартенсит, называется критической скоростью закалки. Суть данного превращения состоит в том, что в этих условиях происходит только бездиффузионное аллотропическое превращение γ-Fe в α-Fe. Что касается растворенных в аустените атомов углерода, то вследствие отсутствия диффузионных процессов они не могут выйти из образовавшейся новой решетки и поэтому остаются в ней, внося в нее существенные изменения и внутренние напряжения.
Для сталей с С>0.6% после охлаждения до 0°С в структуре закаленной стали сохраняется некоторое количество непревращенного (остаточного аустенита) Аост, количество которого увеличивается в высокоуглеродистых сталях с низким значением точек Мн и Мк,
Важнейшим условием А→М-превращения является непрерывное охлаждение аустенита в интервале от Мн до Мк. При остановках фиксируется нераспавшийся аустенит с неприятными последствиями (снижение твердости, изменение размеров и т. д.).
Механизм образования сводится к тому, что в зернах аустенита возникают растущие с огромной скоростью кристаллы мартенсита, имеющие продолговатую сплюснутую форму в виде пластин или реек и возросший объем. Огромная скорость роста мартенситных кристаллов, превышающая 1000м/с, способствует образованию наклепа в аустените, возникающие при этом дислокации переходят в образующийся затем мартенсит, что поышает его твердость, снижая пластичность до нуля. Плотность дислокаций возрастает до 1013см-2. За время превращения кристаллы мартенсита многократно возникают и проскакивают под углами 60° и 120° друг к другу. При наблюдении в микроскоп их следы имеют игольчатую форму.
Мартенситное превращение очень чувствительно к напряжениям, а деформация аустенита может вызвать превращение даже при температурах выше Мн (мартенсит деформации).
Схему превращения А→M можно записать в виде
γ-Fe(C) -> α-Fe(C).
При А->M происходит перестройка решетки γ-Fe г.ц.к. в решетку α-Fe о.ц.к. по сдвиговому механизму без выделения углерода из решетки α-железа.
Атомы растворенного в мартенсите углерода размещаются в октаэдрических порах тетрагональных кристаллов.
Согласно современным взглядам об электронном строении кристаллической решетки мартенсита, находящийся в октапоре атом углерода двумя из четырех своих валентных электронов образует ковалентные связи с двумя ближайшими атомами железа. Остальные же два валентных электрона переходят в электронный газ, образуя металлическую связь между атомами решетки.
Другие рефераты на тему «Производство и технологии»:
- Проектирование привода к конвейеру из конического редуктора и цепной передачи
- Виды испарений и распылений в технологии ЭОТ
- Модернизация конструкции красочного аппарата офсетной листовой печатной машины с индивидуальными приводами всех его цилиндров и накатных валиков
- Котел пищеварочный электрический
- Расчет гидравлической циркуляционной установки
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды