Действие озона на насыщенные полимеры

По изменению ЭПР-спектра в процессе реакции можно сделать вывод о том, что гибель свободной валентности у соединений, дающих ЭПР-спектр в виде синглета (полисопряженные системы), происходит при реакции с озоном или с продуктами распада пероксирадикалов, поскольку в отсутствие озона эти радикалы вполне устойчивы. Предположена же о реакции с R02* противоречит как зависимости [R02°] – t, так и наб

людаемому переходу сигнала R02* в синглет при прекращении подачи озона.

Свойства изделий из модифицированных полимеров во многом зависят от распределения функциональных групп по объему. В большинстве случаев желательно, чтобы модификации подвергались только приповерхностные слои полимера.

Экспериментальное исследование распределения функциональных групп по объему образца представляет довольно сложную задачу. В прошлом для этих целей применяли технику среза тонких слоев полимера микротомом с последующим исследованием слоев [34]. С развитием метода нарушенного полного внутреннего отражения стало возможным изучение связи между расстоянием от поверхности образца и концентрацией функциональных групп [35, 36]. На рис. 9 приведены такие зависимости для различных времен обработки поверхности озоном. Видно, что содержание карбонильных групп убывает с удалением от поверхности. Такой вид зависимости легко объяснить, рассматривая скорость реакции как функцию двух процессов – диффузии озона в глубь полимера и его расходование в реакции

где I – расстояние от поверхности, D – коэффициент диффузии. Поскольку интегральное содержание карбонильных групп пропорционально концентрации озона и времени реакции t

зависимость [С=0]г–t повторяет вид функции [03] i–I. Наибольший интерес вызывает вид зависимости [С=0] г– I на расстояниях меньших 1 мкм, о которой метод нарушенного полного внутреннего отражения в его современном оформлении, к сожалению, информации не дает.

Суждение о функции распределения можно сделать по особенностям кинетики реакции озона с полимерными пленками разной толщины [37]. Было показано, что реакция озона с поверхностью полимера протекает на несколько порядков быстрее, чем реакция в объеме, и соответственно скорость накопления функциональных групп в реакции с поверхностью больше. На рис. 10 представлены зависимости эффективной скорости поглощения озона от толщины образца. Отрезки, отсекаемые на оси ординат, позволяют найти скорость реакции на поверхности, а угловые коэффициенты – скорость реакции в объеме. Детальный анализ этого явления показал, что в условиях опыта константа скорости реакции адсорбированного озона с ПС при 18° йад(.=0,05 л/моль-с, в то время как в объеме &об=0,22 л/моль • с [38]. Разница в скоростях обусловлена относительно большей концентрацией озона на поверхности за счет физической адсорбции. Было показано, что адсорбция озона на ПС приближается к идеальной и хорошо описывается известными закономерностями, в частности при температурах, близких к комнатной, адсорбция подчиняется закону Генри [39]

Средняя теплота адсорбции составляет 13,4±0,8 кДж/моль. В то же время растворимость озона в приповерхностных участках полимера близка или несколько меньше растворимости в соответствующих жидкостях [37]

Рис. 13 Рис. 14

Рис. 11. Плотность кристаллов ПЭ р как функция привеса от кристаллов в атмо сфере озона (1) и зависимость привеса от времени обработки (2)

Рис. 12. Гель-хроматограмма раствора, полученного после обработки кристаллов Ш озоном в течение 121 ч (т – относительное время удерживания (число пульсацш насоса), п – показатель преломления)

Рис. 13. Изменение содержания геля (Г) во времени при действии озона на пленю из атактического ПП при 1 (1), 19 (2), 39 (3) и 56° (4)

Рис. 14. ИК-спектры озонированных кристаллов ПЭ до (– ?) и после обработки водным раствором NaOH (2)

Таким образом, при действии озона на полимеры реакция в начальном периоде протекает главным образом на их поверхности.

Этот вывод хорошо согласуется с наблюдаемыми зависимостями скорости реакции и концентрации свободных радикалов от величины поверхности и с отсутствием связи с массой образцов [37]. В стандартных опытах газовый поток, содержащий озон, проходил через цилиндрически слой порошка полимера, например ПС, высотой h со скоростью v (л/с) Постоянство скорости потока газа достигалось подбором реактора небольшого сечения (0,6–1,2 см). Диффузия озона поверхности полимера при этом не лимитировала скорость реакции. Объем газовой фазы при прохождении слоя h оставался постоянным, поскольку концентрации 03 были малы. В этой серии опытов скорость подач газовой смеси и количество полимера подбирались так, чтобы концентрация озона на выходе из реактора была заметно меньше, чем на входе.

После прохождения слоя h концентрация озона в газе уменьшается и

составляет

где s – удельная поверхность', м2/г, р – навеска ПС, г, р» – коэффициент пересчета от объемной концентрации [03]г (моль/л) к поверхности.

В соответствии с моделью скорость накопления функциональных групп должна быть различной по высоте реактора, что и наблюдается на опыте. В табл. 2 приведены данные по концентрации функциональных групп в верхнем и нижнем слоях ПС.

В соответствии со сказанным логарифм отношения lg[03] г/[О3]0 должен быть линейной функцией от s, что также выполняется [27]. Эффективная энергия активации составляет 17,2 кДж/моль. С учетом теплоты адсорбции (~12,6 кДж/моль) для энергии активации химической реакции получается величина ~28 кДж/моль [27].

При действии озона на ПЭ в нем, так же как и в ПС, накапливаются кетоны, кислоты, перекиси и другие кислородсодержащие функциональные группы [27]. Одновременно наблюдается значительное увеличение адгезии ПЭ к металлу, красителям [40, 41], возрастает прочность клеевых и сварных швов [42].

Реакция озона с поликристаллическими образцами ПЭ сопровождается заметным возрастанием удельного веса (рис. 11), который хорошо коррелирует с увеличением содержания карбонильных и карбоксильных групп [43]. При длительной обработке микрокристаллов ПЭ озоном происходит замедление скорости образования С=0-групп и увеличения массы образца, а на конечных стадиях обработки (~100 ч и более) интенсивность полосы при 1710–1740 см-1 и масса не изменяются, несмотря на продолжающееся поглощение озона.

Исследование ММ показало, что при достаточно глубоких степенях превращения на хроматограмме (рис. 12) присутствуют два основных пика, соответствующих ординарному и удвоенному расстояниям между плоскостями кристалла [44, 45]. Полученные результаты можно объяснить следующим образом: диффузия озона внутрь кристалла затруднена вследствие плотной упаковки его молекул, и реакция идет главным образом с поверхности, которая образована складками макромолекул. В местах складок происходит преимущественный распад цепи, размер же фрагментов задан межплоскостным размером кристаллита.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы