Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня

Проектирование МСАР следящего типа, как подсистем исполнительного уровня в составе многоуровневой системы управления представляет собой традиционную для ТАУ задачу динамического синтеза. Однако ее решение имеет весьма существенные особенности, обусловленные факторами многомерности и многосвязности объекта управления ОУ; высоким порядком его математической модели; особенностями оценки качества р

аботы МСАР и др. По этим причинам непосредственное применение традиционных инженерных методов синтеза одномерных следящих СУ оказываются невозможным без их обобщения на многомерный случай. Научные работы в этой области, в основном, посвящены аналитическим методам оптимального синтеза МСАР. Используемые при этом функционалы качества (критерии оптимальности) назначаются, как правило, исходя из условий математической разрешимости задачи, и в большинстве своем имеют обобщенный, абстрактный характер, слабо связанный с инженерными приложениям и требованиями.

Несмотря на большое число публикаций и монографий, в основном двадцатилетней давности, в учебной литературе по теории автоматического управления инженерным методам динамического синтеза МСАР не уделяется должного внимания. Именно этим обусловлен выбор темы исследования.

Цель работы: частичный синтез и исследование многомерной САР исполнительного уровня в составе распределенной системы управления сложным техническим объектом.

Исходные данные. Структурная схема рассматриваемой МСАР, показана на рисунке 1.

Передаточные матрицы (ПМ) линейных МДЗ в составе двумерной МСАР имеют вид:

W1(p)=diag{Wp1(p); Wp2(p)};

W2(p)=diag{W01(p); W02(p)};

W3(p)=diag (1/p); 1/p)},

где Wpi(p) – подлежащая определению ПФ i-го сепаратного регулятора; i = 1; 2.

W0i(p) = – ПФ неизменяемой части i-го сепаратного канала;

Wk(p) – ПМ компенсатора (в работе рассматриваются два его варианта):

a)Wk(p) = [E+Wx(p)] – ПМ компенсатора с прямыми перекрестными связями;

b) Wk(p) = [E Wx(p)]–1 – ПМ компенсатора с обратными перекрестными связями.

Здесь , а Wx1(p) и Wx2(p) – подлежащие определению передаточные функции прямых (или обратных) перекрестных связей в составе последовательного компенсатора, обеспечивающего свойство автономности каналов регулирования.

, где – ПФ перекрестных связей в объекте управления ОУ, а Ky1=15; Ky2=10; Ty1=0.4Ta1; Ty2=1.5Tb2.

Таблица 1 – Исходные данные

вар.

i

Кi, с-1

Tai, с

Tbi, с

wсрi

Mi

Схема

ЦСАР

6

1

125

0.07

0.01

41

1.23

a)

2

135

0.11

0.009

33

1.35

1. Синтез и исследование непрерывной МСАР

1.1 Определение ПФ сепаратных регуляторов

Изобразим структурную схему МСАР при отсутствии перекрестных связей в многомерном управляющем устройстве и в многомерном объекте управления (Рисунок 1.1)

Рисунок 1.1 – Структурная схема МСАР при отсутствии перекрестных связей в МУУ и МОУ

Запишем передаточные матрицы с заданными числовыми значениями параметров:

;

;

;

Применяя формулы В.А. Бесекерского для типовой «симметричной» ЛАХ, выберем вид и параметры ПФ Wр1(p) и Wр2(p), обеспечивающие заданные свойства сепаратным каналам по точности (коэффициент добротности K=Ki), по быстродействию (wср) и по колебательности (M).

1) Первый сепаратный канал

Изобразим структурную схему первого сепаратного канала (Рисунок 1.2)

Рисунок 1.2 – Структурная схема первого сепаратного канала

Запишем передаточную функцию первого разомкнутого сепаратного канала:

; (1.1)

Определим, обеспечиваются ли заданные в ТЗ свойства сепаратного канала.

Построим ЛАЧХ первого сепаратного канала. Построение проведем на масштабно-координатной бумаге.

Первая асимптота ЛАЧХ с наклоном -20 дБ/дек пересекает ось L(w) в точке 20logK1, что соответствует требованию ТЗ по точности.

Определим частоту среза.

log wср=1.6, wcp=40 рад/с. Она близка к требуемому значению.

Построим АЧХ замкнутого сепаратного канала (Рисунок 1.3), как зависимость модуля частотной передаточной функции замкнутого канала от частоты.

Передаточная функция замкнутого канала определяется формулой

(1.2)

Определим показатель колебательности М, используя формулу

; (1.3)

где N(w) – модуль частотной передаточной функции замкнутого канала.

Свойства первого сепаратного канала по колебательности не соответствуют заданным в ТЗ.

Рисунок 1.3 – АЧХ замкнутого сепаратного канала 1

Определим передаточную функцию сепаратного регулятора.

Типовая «симметричная» ЛАХ на среднечастотном участке имеет наклоны (-40 дБ/дек; -20 дБ/дек; -40 дБ/дек). Сравнивая с заданной передаточной функцией первого сепаратного канала, определим, что желаемая передаточная функция будет иметь вид:

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы