Мобильный офис с антенной решеткой стандарта GSM-900

В диэлектриках и изоляторах захваченные на «ловушки» носители иногда могут снова высвободиться за счет тепловых эффектов, вызывая промежуточные релаксационные эффекты. В зависимости от энергии ионизации время их релаксации изменяется от долей микросекунды до многих суток, приводя, например, к появлению в радиационно наведенной проводимости составляющих с постепенно возрастающим временем жизни и

опадающей амплитудой.

Отдельные носители, генерируемые в диэлектрике и изоляторах, захватываются на глубокие энергетические уровни, их плотность возрастает с ростом дозы и достигает насыщения после заполнения большинства свободных уровней. В этом случае говорят о долговременных эффектах захваченных носителей. И наконец, под действием энергии, высвобождающейся при парной рекомбинации и рекомбинации свободных носителей, возникают химические эффекты, проявление которых в аппаратуре и влияние на работоспособность практически не исследованы.

Возникающие при облучения неравновесные носители в результате их направленного дрейфа и диффузии в p-n - переходе и прилегающих к нему областях вызывают переходные токи во внешних цепях полупроводниковых приборов и компонент ИС, называемые первичными ионизационными токами. Направление этих токов соответствует направлению токов через обратносмещенные переходы. Первичные ионизационные токи, протекающие во входных цепях транзисторов, могут умножаться за счет усилительных свойств транзисторов. Степень усиления зависит от схемы включения транзистора и электрического режима его работы. Токи в выходных цепях, обусловленные умножением первичных ионизационных токов, называют вторичными. Изменяется также проводимость материала, особенно в изолирующих и слаболегированных областях полупроводниковых приборов (каналы и изолирующий слой затвора полевого транзистора).

Кроме указанных эффектов на работу полупроводниковых приборов могут оказывать влияние утечки по воздуху между электродами, возникающие при ионизации. Этот эффект может стать определяющим для приборов с малой (ниже 10-13 … 10-14 А*с*Р-1) чувствительностью к гамма-излучению.

Таким образом, ионизационные эффекты в ЭРИ при воздействии гамма- и нейтронного излучений вызывают образование избыточных зарядов, появление которых в диэлектриках и изоляторах понижает их изолирующие свойства, приводит к возникновению токов утечки, а в полупроводниках к образованию ионизационных токов. В результате возникают обратимые изменения параметров аппаратуры, находящейся во включенном состоянии, что может приводить к временной потере ее работоспособности, ложным срабатываниям, сбоям и пропаданию полезного сигнала.

Эффекты, вызванные действием ЭМИ.

В реальных условиях работы ЭРИ в составе аппаратуры на них могут воздействовать непосредственно электромагнитные поля, трансформированные по форме и ослабленные экранами объекта или блоков аппаратуры, и импульсные электрические напряжения и токи, наводимые полем ЭМИ на схемных соединениях и в самих изделиях.

В общем случае при действии ЭМИ на изделия электронной техники имеют место следующие эффекты:

• проникновение ЭМИ внутрь корпусов и искажение внутренних электрических и магнитных полей изделий;

• возникновение ЭДС и токов на корпусах, выводах, металлизации и других проводящих элементах;

• воздействие на изделия электрических импульсов, приходящих с других элементов РЭА, паразитных антенн

Степень влияния этих эффектов на работоспособность ЭРИ неодинакова. Наиболее существенное влияние на работоспособность изделий в составе аппаратуры оказывают импульсные напряжения, наведенные ЭМИ на протяженных соединительных линиях, антеннах и т. п., электрически связанных с этими изделиями. При воздействии импульсных перенапряжений в изделиях могут наблюдаться:

• пробои p-n - переходов у полупроводниковых приборов;

• пробои вакуумных и газонаполненных промежутков;

• расплавление и обрывы токоведущих дорожек, мест пайки (сварки) проводов из-за термо- и электродинамических напряжений;

• сбои в работе и появление ложных сигналов.

Эти явления присущи наиболее чувствительным к излучению (изделиям, таким, как полупроводниковые приборы и интегральные микросхемы. Основные отказы этих изделий связаны с электрическими (влияющими на величину и распределение токов в структуре приборов) и тепловыми (определяющими повышение температуры отдельных участков этой структуры) процессами. Возникновение электрического (лавинного или туннельного) пробоя приводит к резкому возрастанию обратного тока перехода, который может превысить допустимое значение. После воздействия импульса перенапряжения, если электрический пробой не перешел в тепловой, значение обратного тока возвращается к первоначальному (допробойному).

Вторичный пробой является основной причиной необратимых изменений в p-n - переходах при воздействии импульсных перенапряжений. Вторичный пробой связан с протеканием тока и выделением мощности на отдельных небольших по площади участках области перехода. По мере выделения тепла на отдельных участках полупроводника сопротивление их меняется, в результате чего возможно перераспределение токов в других участках p-n - перехода. Этот эффект кумуляции характерен как для биполярных транзисторов, так и для МОП - транзисторов, тиристоров, точечных и плоскостных диодов и других приборов с переходами. Кумуляция тока и мощности в основном связана с наличием:

• поперечного электрического поля в базе, приводящего к дополнительному смещению отдельных участков p-n - перехода по сравнению с остальными;

• неоднородностей распределения концентрации примесных атомов в структуре;

• структурных дефектов;

•неоднородностей конфигурации приборов.

Первые две причины наиболее существенны. При этом более чувствительным к пробою является переход эмиттер—база, включенный в обратном направлении. Значительное место в повреждении полупроводниковых приборов планарной конструкции занимает расплавление токоведущих дорожек, напыляемых на поверхность окисных пленок. В наибольшей степени этот эффект проявляется у кремниевых усилительных СВЧ транзисторов (с дорожками весьма малых размеров), а также у быстродействующих. Высокочастотных интегральных микросхем.

При воздействии достаточно мощных и коротких по длительности импульсных напряжений иногда наблюдается эффект электродинамического отрыва вывода транзистора от траверсы в месте их соединения. Другой вид повреждения ряда изделий электронной техники и электротехники при воздействии импульсных электрических напряжений связан с перегоранием и расплавлением их токоведущих и резистивных элементов при протекании большого тока.

4.6 Выводы

В данном разделе была произведена оценка дипломного проекта с точки зрения безопасности, эргономичности и экологичности. В результате исследований можно сделать следующие выводы:

· Лаборатория, где помещено рабочее место, относится к помещениям без повышенной опасности и отвечает требованиям, предъявленным в [9].

· Рассмотрены вопросы пожарной безопасности рабочего места и системы. По полученным результатам можно констатировать, что лабораторное помещение относится к относится к категории "В" пожароопасных помещений. Оно отвечает требованиям [12] и является безопасной с пожарной точки зрения.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы