Пространства Соболева
Доказательство. Пусть непрерывно дифференцируема на отрезке Согласно теореме о среднем, вследствие непрерывности найдётся точка такая, чт
о Поэтому на отрезке справедливо следующее тождество:
С помощью неравенства Коши-Буняковского имеем
где Следовательно, для любой непрерывно дифференцируемой на отрезке функции справедливо неравенство
(1.8)
Пусть теперь последовательность – фундаментальная по норме Тогда
при Следовательно, фундаментальна в смысле равномерной сходимости и, по критерию Коши равномерной сходимости, сходится к Тем более в среднем. Таким образом, в классе из содержащим в качестве представителя, содержится непрерывная функция и, значит, этот класс можно отождествить с Отождествим элементы с непрерывными функциями. Пусть Переходя в неравенстве к пределу при придём к неравенству (1.8).
Итак, вложение в доказано. Доказательство теоремы закончено.
1.5 Пространства Соболева и
Пусть – односвязная область с достаточно гладкой границей В замкнутой области рассмотрим линейное пространство всевозможных непрерывно дифференцируемых функций со скалярным произведением
При этом
(1.9)
Полученное пространство со скалярным произведением обозначается а его пополнение – это, по определению, пространство Соболева
Пусть – фундаментальная последовательность в то есть при Отсюда следует, что в будут фундаментальными последовательности
Вследствие полноты в имеются элементы, которые мы обозначим
так что при в среднем
Элементы называются обобщёнными частными производными элемента
Скалярное произведение и норма задаются в теми же формулами, что и в в которых теперь производные обобщённые, а интегрирование понимается в смысле Лебега. Введем в рассмотрение пространство Это пространство является пополнением в норме
(1.10)
линейного пространства функций, непрерывно дифференцируемых на и таких, что является гильбертовым пространством со скалярным произведением
Лемма 3. Если а то
Доказательство. Достаточно доказать первую из этих формул. Она справедлива, если а Пусть – фундаментальная в последовательность, предел которой – элемент Переходя в тождестве к пределу при получим для любой Действительно, из сходимости в следует, что
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах