Пространства Соболева

Полагая здесь получим то есть и, значит, ограничен. Теорема доказ

ана.

В качестве приложения доказанной теоремы и пространств Соболева докажем существование и единственность обобщённого решения задачи Дирихле для уравнения Пуассона. В замкнутой ограниченной односвязной области с достаточно гладкой границей рассмотрим следующую граничную задачу:

(2.2)

(2.3)

Предположим, что правая часть непрерывна в по совокупности переменных. Функция называется классическим решением задачи (2.2) – (2.3), если непрерывна как функция трёх переменных в имеет в непрерывные производные, входящие в левую часть (2.2), удовлетворяет в уравнению (2.2) и равна нулю на то есть удовлетворяет граничному условию (2.3).

Пусть – классическое решение задачи (2.2) – (2.3), а непрерывна в равна нулю на и непрерывно дифференцируема в тогда для любой такой справедливо следующее интегральное тождество:

(2.4)

Для доказательства этого тождества воспользуемся формулой Гаусса-Остроградского:

Примем и получим

Поскольку

а то получаем (2.4).

Пусть теперь а интегралы (2.4) понимаются в смысле Лебега. Функция называется обобщённым решением краевой задачи (2.2) – (2.3), если для любой функции выполняется интегральное тождество (2.4).

Докажем, что для любой правой части обобщённое решение краевой задачи (2.2) – (2.3) существует и единственно.

Для этого заметим, что гильбертово пространство вложено в гильбертово пространство так как, по определению всякая функция принадлежит также и и справедлива оценка для любой (см. п. 1.5):

Следовательно, по теореме 4 для всякой функции существует единственная функция такая, что для всех

а это и есть интегральное тождество (2.4).

Заключение

Таким образом, мы рассмотрели пространства Соболева, их основные свойства и применение в математической физике.

Список литературы

1. Треногин В.А. Функциональный анализ: Учебник. – 3-е изд., исп. – М.: ФИЗМАТЛИТ, 2002. – 488 с.

2. Соболев С.Л. Некоторые применения функционального анализа в математической физике. – 3-е изд., перераб. и доп. / Под ред. О.А. Олейник. – М.: Наука. Гл. Ред. физ.-мат. лит., 1988. – 336 с.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы