Пространства Соболева
Полагая здесь получим то есть и, значит, ограничен. Теорема доказ
ана.
В качестве приложения доказанной теоремы и пространств Соболева докажем существование и единственность обобщённого решения задачи Дирихле для уравнения Пуассона. В замкнутой ограниченной односвязной области с достаточно гладкой границей рассмотрим следующую граничную задачу:
(2.2)
(2.3)
Предположим, что правая часть непрерывна в по совокупности переменных. Функция называется классическим решением задачи (2.2) – (2.3), если непрерывна как функция трёх переменных в имеет в непрерывные производные, входящие в левую часть (2.2), удовлетворяет в уравнению (2.2) и равна нулю на то есть удовлетворяет граничному условию (2.3).
Пусть – классическое решение задачи (2.2) – (2.3), а непрерывна в равна нулю на и непрерывно дифференцируема в тогда для любой такой справедливо следующее интегральное тождество:
(2.4)
Для доказательства этого тождества воспользуемся формулой Гаусса-Остроградского:
Примем и получим
Поскольку
а то получаем (2.4).
Пусть теперь а интегралы (2.4) понимаются в смысле Лебега. Функция называется обобщённым решением краевой задачи (2.2) – (2.3), если для любой функции выполняется интегральное тождество (2.4).
Докажем, что для любой правой части обобщённое решение краевой задачи (2.2) – (2.3) существует и единственно.
Для этого заметим, что гильбертово пространство вложено в гильбертово пространство так как, по определению всякая функция принадлежит также и и справедлива оценка для любой (см. п. 1.5):
Следовательно, по теореме 4 для всякой функции существует единственная функция такая, что для всех
а это и есть интегральное тождество (2.4).
Заключение
Таким образом, мы рассмотрели пространства Соболева, их основные свойства и применение в математической физике.
Список литературы
1. Треногин В.А. Функциональный анализ: Учебник. – 3-е изд., исп. – М.: ФИЗМАТЛИТ, 2002. – 488 с.
2. Соболев С.Л. Некоторые применения функционального анализа в математической физике. – 3-е изд., перераб. и доп. / Под ред. О.А. Олейник. – М.: Наука. Гл. Ред. физ.-мат. лит., 1988. – 336 с.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах