Алгебраические системы замыканий
Введение
Важную роль в математике играет множество подалгебр данной алгебры относительно отношения включения . Оно образует полную решётку с некоторыми характерными свойствами. Понятие замыкания также играет важную роль в алгебре и топологии. В данной дипломной работе рассматриваются основные свойства си
стем замыканий на множествах, взаимосвязь систем замыканий с операторами замыкания и соответствиями Галуа. Соответствия Галуа представляют собой достаточно интересный класс объектов. Они возникли и получили своё название из теории Галуа, но спустя некоторое время стали применяться не только в самой теории, но и во многих других областях математики. В данной работе соответствия Галуа будем рассматривать в качестве одного из наиболее важных примеров систем замыканий.
Целью квалификационной работы является изучение абстрактных систем замыканий на множестве.
Задачи:
1. рассмотреть понятие системы замыкания, проиллюстрировать это понятие на примерах;
2. сформулировать и доказать теорему о взаимосвязи между системами замыканий и операторами замыкания;
3. рассмотреть понятие алгебраических систем замыканий, сформулировать и доказать теорему об описании структуры алгебраических систем замыканий;
4. рассмотреть понятие соответствия Галуа, примеры соответствий Галуа. Установить связь соответствий Галуа с системами замыканий.
Исходя из цели и задач, дипломная работа состоит из пяти параграфов. В качестве первого шага введём необходимые определения и докажем ряд простых предложений. Этому отводится параграф 1.
В параграфе 2 докажем основную теорему об операторе замыканий, которая даёт прямой выход на соответствия Галуа.
В параграфе 3 сформулируем и докажем одну из наиболее важных теорем о структуре алгебраических систем замыканий.
Параграф 4 будет полностью посвящен соответствиям Галуа: определение, основные примеры и их связь с системами замыканий.
Последний параграф посвящен решению задач.
Основной литературой при написании квалификационной работы стали монографии Кона П. ([1]) и Куроша А. Г. ([2], [3]). Остальные источники ([4], [5], [6], [7]) использовались как дополнительная справочная литература.
Для удобства в данной работе использованы следующие обозначения:
∆ – начало доказательства;
▲ – конец доказательства.
В работе принята сквозная двойная нумерация примеров, где первое число – номер параграфа, а второе – номер примера в параграфе.
Основными результатами работы являются:
1. доказательство теоремы о взаимосвязи между системами замыканий и операторами замыкания: Каждая система замыканий D на множестве A определяет оператор замыкания на A по правилу (X) = ∩{Y D | YX}. Обратно, каждый оператор замыкания на A определяет систему замыканий D = {XA | (X) = X}.
2. доказательство теоремы о структуре алгебраических систем замыканий: Система S(A) подалгебр универсальной алгебры A является алгебраической системой замыканий. Обратно, если дана алгебраическая система замыканий D на множестве A, то для подходящего множества алгебраических операций Ω можно определить такую структуру универсальной алгебры на A, что S(A) = D.
3. установление связи соответствий Галуа с системами замыканий на конкретных примерах.
4. решение задач.
§1. Основные понятия и примеры
Понятие упорядоченного множества является фундаментальным для современной теоретико-множественной математики, поэтому первым делом ведём именно это понятие и понятия с ним связанные.
Определение 1. Пусть L – непустое множество с бинарным отношением , которое является рефлексивным, транзитивным и антисимметричным. Тогда введенное отношение – отношение порядка. Множество L – упорядоченное множество.
Определение 2. Упорядоченное множество, в котором два элемента сравнимы, называется линейно-упорядоченным множеством или цепью.
Определение 3. Решеткой называется упорядоченное множество, в котором любые два элемента имеют точную верхнюю и точную нижнюю грани.
В качестве второго шага введём те определения и предложения, которые непосредственно связаны с темой дипломной работы и которыми будем пользоваться в дальнейшем.
Определение 4. Пусть A – произвольное множество и B (A) – его булеан, то есть множество всех его подмножеств. Будем рассматривать некоторые подмножества булеана B (A), или системы подмножеств множества A. Система D подмножеств множества A называется системой замыканий, если само множество A принадлежит D и система D замкнута относительно пересечений, то есть
∩Y D для любой непустой подсистемы YD.
Так как система замыканий замкнута относительно произвольных пересечений, то из предложения 1 следует, что система замыканий является полной решеткой (относительно упорядоченности по включению). Но это не обязательно подрешетка в B (A), так как операция объединения в D, вообще говоря, отлична от этой операции в B (A).
Одним из примеров системы замыканий является следующий:
Пример 1.1: Система всех подгрупп группы G является системой замыканий, так как G является подгруппой в G и пересечение любого непустого семейства подгрупп группы G само будет подгруппой в G.
Введем ещё одно важное понятие – понятие оператора замыкания на множестве.
Определение 5. Оператором замыкания на множестве A называется отображение множества B (A) в себя, которое подчиняется следующим трём аксиомам:
J. 1. X(X);
J. 2. Если , то (X)(Y);
J. 3. (X) = (X)
для всех X, YB (A).
Для каждой системы замыканий D на множестве A можно определить оператор замыкания равенством
(X) = ∩{YD | YX} для всех XA.
Отметим, что группа аксиом J. 1 – J. 3 является независимой. Покажем это.
Приведём пример отображения, при котором выполняются аксиомы J. 2, J. 3, а аксиома J. 1 не выполняется. Каждому подмножеству X множества A поставим в соответствие пустое множество. Очевидно, что при таком задании оператора не выполняется лишь первая аксиома.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах