Алгебраические системы замыканий
Предложение 1. Если A – такое упорядоченное множество с наибольшим элементом, в котором каждое подмножество обладает точной нижней гранью, то A является полной решеткой.
Доказательство:
∆ Заметим, что если каждое подмножество точной нижней гранью обладает, следовательно, ей обладает и пустое множество, то есть в A существует наибольший элемент.
Требуется доказать, что A
– полная решетка, то есть любое непустое подмножество имеет наибольший и наименьший элемент.
Рассмотрим XA, Y – множество всех верхних граней множества X в A и положим y = inf Y. Тогда любой элемент из X будет нижней гранью множества Y и, следовательно, xy для любого xX; если также xz для любого xX, то zY и, следовательно, yz. Поэтому y = sup X. ▲
Определение 8. Упорядоченное множество (I,) называется направленным, если для любых i, jI существует такой элемент kI, что ik, jk, то есть для любого двухэлементного множества из I существует верхняя граница.
Предложение 2. Пусть A – упорядоченное множество; тогда следующие три условия эквивалентны:
(i) Каждое непустое направленное подмножество множества A имеет точную верхнюю грань.
(ii) Каждая непустая цепь множества A имеет точную верхнюю грань.
Доказательство:
∆ Каждая вполне упорядоченная цепь является цепью, и каждая цепь направлена, следовательно, (i)(ii); чтобы закончить доказательство, покажем, что (ii)(i). Возьмем максимальную цепь, в ней существует точная верхняя грань. Тогда по лемме Цорна и направленное подмножество множества A имеет точную верхнюю грань. ▲
Предложение 3 (лемма Цорна). Непустое упорядоченное множество, в котором каждая цепь обладает верхней гранью, имеет максимальный элемент, точнее для любого элемента a из A существует элемент ba, являющийся максимальным в A.
Лемма Цорна была предложена в 1935 году. Она часто заменяет рассуждения, основанные на таких эквивалентных ей принципах, как принцип максимальности Хаусдорфа, аксиома выбора, теорема Цермело о вполне упорядоченности.
Можно показать эквивалентность этих утверждений лемме Цорна, но мы не будем этого делать, так как это не является целью дипломной работы. Лемма Цорна принимается нами в качестве аксиомы.
§2. Связь систем замыканий с операторами замыкания
В параграфе 1 были даны определения систем замыканий и операторов замыкания. Между ними существует взаимосвязь. Сформулируем эту взаимосвязь в качестве теоремы и докажем её.
Теорема 1. Каждая система замыканий D на множестве A определяет оператор замыкания на A по правилу
(X) = ∩{Y D | YX}.
Обратно, каждый оператор замыкания на A определяет систему замыканий
D = {XA | (X) = X}.
Доказательство:
∆ 1) Пусть дана система замыканий D и оператор , определенный по правилу (X) = ∩{Y D | YX}. Докажем, что – оператор замыкания. Для этого проверим выполнимость условий J. 1 – J. 3. Этот оператор удовлетворяет условиям J. 1 – 2 по определению. По условию, D – система замыканий. Тогда
(X) = XXD, (1)
так как (X)D, то отсюда вытекает J. 3.
2) Обратно, пусть задан оператор замыкания (удовлетворяющий J. 1 – 3) и пусть
D = {XA | (X) = X}. (2)
Докажем, что D – система замыканий. Если (Xi)iI – произвольное семейство в D и ∩Xi = X, то XXi; следовательно, по J. 1. (X)(Xi) = Xi для всех i, и поэтому
(X)∩Xi = X.
Вместе с условием J. 2 это показывает, что (X) = X, то есть XD. Таким образом, с помощью мы построили систему замыканий D.
3) Покажем, что соответствие D взаимно однозначно.
Во-первых, пусть D – произвольная система замыканий, – оператор, определенный равенством (X) = ∩{YD | YX} для всех XA, и D ' – система замыканий, определенная оператором по формуле (2). Тогда D ' = D в силу (1). Возьмем затем произвольный оператор замыкания , и пусть D – система замыканий, определенная оператором по формуле (2), а ' – оператор, определенный системой D по формуле (X) = ∩{YD | YX}. Как только что было показано, D тогда также определяется оператором ', и, следовательно,
(X) = X '(X) = X. (3)
В силу J. 3, (X) = (X); поэтому из (3) вытекает, что '(X) = (X). Но X(X) и, применяя ' получаем '(X) '(X) = (X), а обратное включение следует из соображений симметрии. ▲
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах