Моделирование геометрического паркета из пятиугольников и шестиугольников

Но при построении шестиугольника с этими условиями могут возникнуть следующие конфигурации, приводящие к невыпуклым шестиугольникам:

а) После последовательного построения отрезков OA,OE, ED и DC точки D и С окажутся расположенными по разные стороны от прямой OE, то есть возникнет один из случаев изображенных на рис. 4 ил

и на рис. 5:

Но в выпуклом шестиугольнике точки D и С должны располагаться по одну сторону относительно прямой OE. Таким образом, на вводимые параметры необходимо наложить дополнительное условие:

б) При построении шестиугольника точки Е и О могут оказаться расположенными по разные стороны от прямой DC, но в выпуклом шестиугольнике точки Е и О должны располагаться по одну сторону относительно прямой DС иначе возникнет следующий случай невыпуклого шестиугольника:

Данный случай возникнет, если ЕН1>DН2 .

Следовательно, на вводимые параметры необходимо наложить еще одно условие:

Рассуждая аналогичным образом для точек В и О, получаем еще одно дополнительное условие:

Итак, если после введения параметров одно из условий (1), (2), (3) или (4) не выполняется, то программа должна предусмотреть возврат на уточнение параметров, чтобы избежать конфигураций, рассмотренных в случаях а) и б).

Программа построения и примеры паркета из рассмотренного шестиугольника представлены в приложении 1 и в приложении 2 соответственно.

§ 2. Моделирование паркета из пятиугольников

Задача. Написать математическую модель для составления программы изображения паркета на экране компьютера, используя шестиугольник, изображенный на рис. 1.

Для пятиугольника, изображенного на рис. 1, выполняются следующие условия:

1), (1)

2), (2)

3). (3)

В классификации М. Гарднера [3, c.184], [1 , c. 196] и Марджори Райс [3, c.189] этому пятиугольнику присвоен тип № 2.

Условия (2) и (3) не являются независимыми. Вычисляя сумму углов пятиугольника по формуле , получаем 5400, поэтому достаточно потребовать выполнение одного из условий (2), (3), тогда второе выполняется автоматически. Итак, уменьшая число параметров для пятиугольника на 2 на основании равенств (1), (3), получаем пять параметров для задания пятиугольника. Это (рис. 2.)

1) длины сторон: a=AE, b=ED, c=CB,

2) углы: .

Для декартовой системы координат, изображенной на рисунке 2, получаем координаты вершин и векторов:

.

Для задания вектора введем вспомогательный угол , образованный этим вектором с положительным направлением оси Ох

Для углов в точке D с учетом их ориентации имеем

или

Для задания вектора введем вспомогательный угол, образованный этим вектором с положительным направлением оси .

Для углов в точке С имеем

,

.

,

На вводимые параметры наложим естественные условия:

(4)

Но при построении пятиугольника с этими условиями могут возникнуть следующие конфигурации, приводящие к невыпуклым пятиугольникам:

а) После последовательного построения отрезков ЕА, ED, DC для пятиугольника точки Е и С оказались расположенными по одну стороны относительно прямой AD (рис. 2, рис. 3), но в выпуклом многоугольнике точки Е и С должны располагаться по разные стороны относительно диагонали AD.

Две точки расположены по одну сторону относительно прямой, заданной уравнением , тогда и только тогда, когда выполняется условие

. (5)

Составим уравнение прямой AD

.

(6)

Неравенство (5) для точек и прямой (6) принимает вид

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы