Моделирование геометрического паркета из пятиугольников и шестиугольников
Программа построения и примеры паркета из рассмотренного пятиугольника представлены в приложении 3 и в приложении 4 соответственно.
После наложения условий (7)-(10) получаем паркет из выпуклых пятиугольников. Если снять некоторые условия из условий (4), тогда могут возникнуть случаи, когда шестиугольник выраждается в пятиугольник или четырехугольник, а пятиугольник вараждается в четырехугол
ьник.
Заключение
В книгах [1; 2] рассмотрены различные типы пятиугольников и шестиугольников, которыми можно замостить плоскость, но, к сожалению, в них нет математической теории для моделирования этих пятиугольников и шестиугольников. В настоящей работе была выполнена формализация поставленной задачи, впервые построены модели, разработаны программы для построения паркетов из некоторых типов пятиугольников и шестиугольников предложенных в книге [2], а так же был проведен эксперимент по тестированию разработанных программ. Для математического моделирования применялся метод координат и векторный метод. В работе впервые выведены условия выпуклости данных типов пятиугольника и шестиугольника. Все программы разработаны в среде Турбо Паскаль и позволяют наглядно моделировать различные паркеты.
Литература
1. Гарнер М. Путешествие во времени. – М.: Мир, 1990. – 341 с.
2. Математический цветник. /Сост. и ред. Д.А.Кларнер. М.: Мир, 1983. – 494 с.
3. Совертков П.И., Енбаева Е.А. Равносторонний пятиугольник Рейнхардта// Элементарная математика, математическое образование, геометрия и информатика №3, СПб.: Мифрил, 2000, с. 68-75.
4. Совертков П.И.,Слива М.В., Хохлов Д.Н. Геометрический паркет – I // Элементарная математика, математическое образование, геометрия и информатика № 4, СПб.: Мифрил, 2000, с. 3-19.
Приложение 1
Программа для построения паркета из шестиугольника.
Program shestiugolnik;
uses graph;
label 1,2;
var a,z4,s4,b,d,f,xx,yy,grv,grm,x0,x1,j,i,x5,y5,x2,x3,x4,y0,t, u,y1,y2,y3, y4, z1,z2,z3,s1,s2,s3:integer;tex:string; q,w,e:real;
begin
grv:=detect;
initgraph(grv,grm,'d:\bp\bgi');
1: writeln('gelaete vvesti parametri?(y/n)');
readln(tex);
if tex='n' then goto 2;
writeln('vvedite storoni');
readln(a,b,d,f);
xx:=-10;yy:=-10;t:=xx;u:=yy;
writeln('vvedite ugli');
readln(q,w,e);
q:=q*pi/180;w:=w*pi/180;e:=e*pi/180;
i:=trunc(sin(e)*(f*sin(q)-d*sin(e)));
j:=trunc(sin(e)*(b*sin(w)-d*sin(e)));
if (i<0)and(j<0) then begin
if (w<e)and(q>e)and(q>0)and(q<180)and(w>0)and(w<180)and(e>0)
and(e<180) then begin
for j:=1 to trunc(900/a) do begin
for i:=1 to trunc(600/(d*sin(e))) do begin
x0:=xx+0;y0:=yy+0;
x1:=xx+a;y1:=yy;
x2:=xx+trunc(A+B*COS(W));y2:=yy+trunc(B*SIN(W));
x4:=xx+trunc(D*COS(E));y4:=yy+trunc(D*SIN(E));
x3:=xx+trunc(A+D*COS(e));y3:=yy+trunc(d*sin(e));
x5:=trunc(f*cos(q))+xx;y5:=trunc(f*sin(q))+yy;
z1:=trunc(f*cos(q)-a)+xx;s1:=trunc(f*sin(q))+yy;
z2:=trunc(f*cos(q)-a-b*cos(w))+xx;s2:=trunc(f*sin(q)-b*sin(w))+yy;
z3:=trunc(f*cos(q)-a-d*cos(e))+xx;s3:=trunc(f*sin(q)-d*sin(e))+yy;
z4:=trunc(f*cos(q)-d*cos(e))+xx;s4:=trunc(f*sin(q)-d*sin(e))+yy;
xx:=xx+trunc(d*cos(e));yy:=yy+trunc(d*sin(e));
line(x0,y0,x1,y1);
line(x1,y1,x2,y2);
line(x2,y2,x3,y3);
line(x3,y3,x4,y4);
line(x4,y4,x5,y5);
line(x5,y5,x0,y0);
line(x5,y5,z1,s1);
line(z1,s1,z2,s2);
line(z2,s2,z3,s3);
line(z3,s3,z4,s4);
line(z4,s4,x0,y0);
end;
xx:=t+trunc(a+a-f*cos(q)+b*cos(w));t:=xx;
yy:=u+trunc(b*sin(w)-f*sin(q));u:=yy;
end;
end else begin writeln('vi vveli nevernie parametri');goto 1;end;
end else begin writeln('vi vveli nevernie parametri');goto 1;end;
readln;
2:
closegraph;
end.
Приложение 2
Пример 1.
Vvedite storoni
95 65 75 45
vvedite ugli
120 25 75
Пример 2.
Vvedite storoni
50 25 38 20
vvedite ugli
110 29 65
Приложение 3
Программа для построения паркета из пятиугольника.
program dip2;
uses graph;
label 1,2;
var a,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,i,j,xx,yy,b,c,vv,xa, xb,xc, xd, xe,ya,mm,yb,yc,yd,ye,x,y,grv,grm:integer;aa,qq,dd,tt,m1:real; tex:string[1];
begin
initgraph(grv,grm,'d:\bp\bgi');
1: writeln('gelaete vvesti parametri?(y/n)');
readln(tex);
if tex='n' then goto 2;
writeln('vvedite');readln(aa,dd,a,b,c);
aa:=aa*pi/180;dd:=dd*pi/180; tt:=aa+dd-pi; qq:=dd-pi;
vv:=trunc(a*sin(aa+dd)-b*sin(dd));
m1:=(a*sin(aa+dd)-b*sin(aa))*(a*sin(aa)-a*sin(dd)-b*sin(-dd+aa));
mm:= trunc(m1);
a1:=trunc(b*cos(aa)); a2:=trunc(b*sin(aa)); a3:=trunc(a*cos(tt));
a4:=trunc(a*sin(tt)); a5:=trunc(c*cos(qq)); a6:=trunc(c*sin(qq));
a7:=trunc(b*cos(dd));a8:=trunc(b*sin(dd)); a9:=trunc(c*cos(aa));
a10:=trunc(c*sin(aa)); a11:=trunc(c*cos(aa));
a12:=trunc(c*sin(aa));
if (mm<0)and(a>0)and(b>0)and(c>0)and(aa>0)and(aa<180) and(dd>0) and(dd<180) then begin
if (vv<0)and(a2+a4+a6>0) then begin
x:=-300;y:=0;xx:=x;yy:=y;
for j:=1 to 20 do begin
xx:=xx+a+a3+a5+a11; yy:=yy-a4-a6-a12;
for i:=1 to 10 do begin
xe:=x; ye:=y;
xa:=x+a; ya:=y;
xd:=x+a1; yd:=y-a2;
xc:=x+a1+a3; yc:=y-a2-a4;
xb:=x+a1+a3+a5; yb:=y-a2-a4-a6;
line(xa,ya,xb,yb);line(xb,yb,xc,yc);line(xc,yc,xd,yd);line(xd,yd,xe,ye);
line(xe,ye,xa,ya);
xe:=x+a+a1+a3+a5; ye:=y-a2-a4-a6;
xa:=x+a1+a3+a5; ya:=y-a2-a4-a6;
xd:=x+a+a3+a5; yd:=y-a4-a6;
xc:=x+a+a5; yc:=y-a6;
xb:=x+a; yb:=y;
line(xa,ya,xb,yb);line(xb,yb,xc,yc);line(xc,yc,xd,yd);line(xd,yd,xe,ye);
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах