Суммирование расходящихся рядов
Непосредственно ясно, что рассматриваемый метод “обобщенного суммирования” является линейным. Что же касается регулярности этого метода, то она устанавливается следующей теоремой принадлежащей Абелю.
2.2 Теорема Абеля [1]
Теорема. Если ряд (А) сходится и имеет сумму А (в обычном смысле), то для сходи
тся степенной ряд (1), и его сумма стремится к пределу А, когда .
Доказательство. Начнем с того, что радиус сходимости ряда (1) не меньше 1, так что для ряд (1), действительно, сходится. Мы имели уже тождество
(где ); вычтем его почленно из тождества
.
Полагая , Придем к тождеству
(4)
Так как то по произвольно заданному найдется такой номер , что , лишь только .
Разобьем сумму ряда в правой части (4) на две суммы
Вторая оценивается сразу и независимо от :
Что же касается первой, то она стремится к 0 при и при достаточной близости к 1 будет
так что окончательно что и доказывает утверждение.
Если ряд (А) суммируем по Пуассону-Абелю к сумме А, то в обычном смысле, как мы видели, он может и не иметь суммы. Иными словами из существования предела
, (5)
вообще говоря, не вытекает сходимость ряда (А). Естественно возникает вопрос, какие дополнительные условия надлежит наложить на поведение членов этого ряда, чтобы из (5) можно было заключить о сходимости ряда (), т.е. о существовании для него суммы в обычном смысле. Первая теорема в этом направлении была доказана Таубером.
2.3 Теорема Таубера
Теорема. Пусть ряд (1) сходится при 0<x<1, и имеет место предельное равенство (5). Если члены ряда (А) таковы, что
(6)
то и
Доказательство. Разобьем доказательство на две части. Сначала
предположим, что Если положить то при величина , монотонно убывая, стремится к нулю.
Имеем при любом натуральном N
так что:
Взяв произвольно малое число , положим
Так что при . Пусть теперь выбрано достаточно большим чтобы: выполнялось неравенство ; соответствующее x было настолько близко к 1, что
. Тогда
Что и доказывает утверждение теоремы.
К рассмотренному частному случаю теоремы приводится и общий. Положим
так что
и затем
(7)
Но из предположения теоремы, т.е. из того, что при , легко получить, что
. (8)
Для доказательства этого достаточно разбить здесь сумму на две:
и выбрать N таким, чтобы во второй сумме все множители были по абсолютной величине меньшими наперед заданного числа , тогда и вторая сумма по абсолютной величине будет меньше , каково бы ни было х; относительно первой суммы, состоящей из определенного конечного числа слагаемых, того же можно достигнуть за счет приближения х к 1.
Но здесь уже можно применить доказанный частный случай теоремы, так что и
С другой стороны,
Отсюда, так как первое слагаемое справа стремится к нулю
Что и завершает доказательство теоремы.
Глава 3. Метод средних арифметических
3.1 Суть метода
Идея метода в простейшем его осуществлении принадлежит Фробениусу, но связывают его обычно с именем Чезаро, который дал методу дальнейшее развитие.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах