Суммирование расходящихся рядов

().

Ландау показал, что можно удовольствоваться даже “односторонним” выполнением этого соотношения;

Теорема. Если ряд (А) суммируем к “сумме” А по методу средних арифметических и при этом выполняется условие src="images/referats/11771/image162.png">(),то одновременно и

.

[Изменяя знаки всех членов ряда, видим, что достаточно также предположить неравенство другого смысла:

.

В частности, теорема, очевидно приложима к рядам с членами постоянного знака.

Доказательство. Для доказательства рассмотрим сначала сумму

,

где n и k - произвольные натуральные числа; путем тождественного преобразования она легко приводится к виду

(10)

Если взять любое (при ), то используя предположенное неравенство , можно получить такую оценку снизу:

,

откуда, суммируя по m, найдем

.

Отсюда, сопоставляя с (10), приходим к такому неравенству:

. (11)

Станем теперь произвольно увеличивать п до бесконечности, а изменение k подчиним требованию, чтобы отношение стремилось к наперед заданному числу . Тогда правая часть неравенства (11) будет стремиться к пределу , так что для достаточно больших значений п будет

. (12)

Совершенно аналогично, рассматривая сумму

и проведя для (при ) оценку сверху:

,

придем к неравенству

Отсюда

Если и одновременно , как и прежде (но на этот раз пусть ), то правая часть этого неравенства стремится к пределу

.

Следовательно, для достаточно больших n окажется

. (13)

Сопоставляя (12) и (13), видим, что, действительно,

.

Теорема доказана.

3.4 Применение обобщенного суммирования к умножению рядов

Остановимся на применении обобщенных методов суммирования в вопросе об умножении рядов по правилу Коши. Пусть, кроме ряда (А), дан ещё ряд

(В)

тогда ряд

(С)

и называется произведением рядов (А) и (В) в форме Коши. Если данные ряды сходятся и имеют обыкновенные суммы А и В, то ряд (С) все же может оказаться расходящимся.

Однако во всех случаях ряд (С) суммируем по методу Пуассона-Абеля и именно к сумме АВ.

Действительно, для 0<x<1 ряд (1) равно как и ряд

оба абсолютно сходятся; обозначим их суммы, соответственно, через и . Произведение этих рядов, то есть ряд

,

По классической теореме Коши также сходится и имеет суммой произведение *. Эта сумма при стремится к АВ, ибо как мы видели, по отдельности

Итак, “обобщенной (в смысле Пуассона-Абеля) суммой” ряда (С) действительно будет АВ, что и требовалось доказать.

Отсюда как следствие получается теорема Абеля об умножении рядов. Равным образом из самого доказательства ясно, что то же заключение остается в силе, если ряды (А) и (В) - вместо того, чтобы сходиться в собственном смысле - лишь суммируемы по методу Пуассона-Абеля к суммам А и В.

В таком случае, учитывая теорему Фробениуса, можно сделать и следующее утверждение: если (А), (В) и (С) суммируемы в смысле Чезаро и имеют, соответственно, “обобщенные суммы" А, В и С, то необходимо С=АВ.

В качестве примера рассмотрим возведение в квадрат ряда

который получается из биномиального разложения

при х=1. умножая указанный числовой ряд на самого себя, придем к хорошо знакомому нам ряду

“обобщенная сумма" которого есть .

Далее, “возведем в квадрат" и этот расходящийся ряд. Мы получим ряд

“обобщенная сумма" которого в смысле Пуассона-Абеля есть .

Глава 4. Другие методы обобщенного суммирования

4.1 Методы Г.Ф. Вороного

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы