Суммирование расходящихся рядов
Пусть мы имеем положительную числовую последовательность и
Из частичных сумм ряда (А) составим выражения
Если при то А называется “обобщенной суммой” ряда (А) в смысле Вороного - при заданном выборе последовательности .
Теорема.
Для регулярности метода Вороного необходимо и достаточно условие.
Доказательство. Необходимость.
Допустим сначала регулярность рассматриваемого метода: пусть из всегда следует и . Если, в частности, взять ряд для которого а прочие(так что и ), то необходимо
Достаточность. Предположим теперь условие теоремы выполненным и докажем, что из вытекает и .
Обратимся к теореме Теплица и заменим там на и на Условие (а) этой теоремы удовлетворено, ибо
Выполнение условий (б) и (в) очевидно, так как
Следовательно, как и требовалось доказать, .
4.2 Обобщенные методы Чезаро
Мы уже знакомы с методом средних арифметических; он является простейшим из бесконечной последовательности методов суммирования, предложенных Чезаро.
Фиксируя натуральное число к, Чезаро вводит варианту
и ее предел при рассматривает как “обобщенную сумму" (к-го порядка) ряда (А). При к=1 мы возвращаемся к методу средних арифметических.
В дальнейшем нам не раз понадобится следующее соотношение между коэффициентами:
Он легко доказывается по методу математической индукции относительно n, B и если исходить из известного соотношения
. (14)
Прежде всего, покажем, что методы Чезаро всех порядков являются частными случаями регулярных методов Вороного. Для этого достаточно положить , ибо из (14) тогда следует, что и к тому же, очевидно,
С помощью того же равенства (14), пользуясь самим определением величин , устанавливается, что
. (15)
Это дает возможность выяснить взаимоотношение между суммированием по Чезаро к-го и (к-1) - го порядка. Пусть ряд (А) допускает суммирование (к-1) - го порядка, так что . В силу (14) и (15) имеем
Применяя сюда теорему Теплица, причем полагаем
придем к заключению, что и . Таким образом, если ряд (А) допускает суммирование по методу Чезаро какого-нибудь порядка, то он допускает и суммирование любого высшего порядка, и притом к той же сумме.
Приведем теперь обобщение уже известной нам теоремы Фробениуса: если ряд (А) суммируем по какому-либо из методов Чезаро (скажем к-го порядка), то он суммируем к той же сумме и по методу Пуссона-Абеля.
Доказательство. Пусть дано, что
(16)
Легко заключить отсюда, что ряд
(17)
для - 1<x<1 сходится. Действительно, так как то из (16) имеем:
Если , то
так что по теореме Коши-Адамара, радиус сходимости ряда (17) равен 1. Он во всяком случае не меньше 1, если А=0.
Рассмотрим теперь ряд тождеств
[2]
Выше мы установили сходимость последнего ряда в промежутке (-1,1); отсюда вытекает сходимость и всех предшествующих рядов. Кроме того,
(18)
Сопоставим с этим тождеством другое:
(19)
которое имеет место в том же промежутке (-1;
1); оно получается к-кратным дифференцированием прогрессии
Умножив обе части тождества (19) на А и вычитая из него почленно равенство (18), получим наконец,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах