Суммирование расходящихся рядов

Дальнейшие рассуждения [с учетом (16)] вполне аналогичны тем, с помощью которых была доказана теорема Абеля и теорема Фробениуса. В результате мы и получим:

что и требовалось доказать.

Отметим, что существуют расходящиеся ряды, с

уммируемые по методу Пуассона-Абеля, но не суммируемые ни одним из обобщенных методов Чезаро. Таким образом, первый из названных методов оказывается сильнее всех последних, даже вместе взятых.

4.3 Метод Бореля

Он состоит в следующем: по ряду (А) и его частичным суммам строится выражение:

Если последний ряд сходится, хотя бы для достаточно больших значений х, и его сумма при имеет предел А, то это число и является “обобщенной суммой” в смысле Борелядля данного ряда (А).

Докажем регулярность метода Бореля. Допустим сходимость ряда (А) и обозначим его сумму через А, а остатки через . Имеем (для достаточно больших х)

Зададимся произвольно малым числом ; найдется такой номер N, что для будет:

.

Представим последнее выражение в виде суммы,

.

Второе слагаемое по абсолютной величине , каково бы ни было х, а первое представляющее собой произведение на многочлен, целый относительно х, становится абсолютно при достаточно больших х. Этим все доказано.

4.4 Метод Эйлера

Пусть дан ряд . Формула, выражающая “преобразование Эйлера” выглядит следующим образом

. (20)

При этом, как было доказано, из сходимости ряда в левой части вытекает сходимость ряда в правой части и равенство между их суммами.

Однако и при расходимости первого ряда второй ряд может оказаться сходящимся; в подомном случае его сумму Эйлер приписывал в качестве “обобщенной суммы" первому ряду. В этом собственно и состоит метод Эйлера суммирования рядов; сделанное только что замечание гарантирует регулярность метода.

Если писать рассматриваемый ряд в обычном виде (А), не выделяя знаков , и иметь в виду вырыжение

для р-ой разности, то можно сказать, что методу суммирования Эйлера в качестве “обобщенной суммы" ряда (А) берется обычная сумма ряда

(в предположении, что последний сходится)

Методы Гельдера представляют собой ещё один класс методов обобщенного суммирования. Но они состоят в простом повторении метода средних арифметических. Поэтому рассматривать их не стоит.

Заключение

В своей дипломной работе я рассмотрел методы суммирования расходящихся рядов, теоремы, вытекающие из этих методов, а также взаимосвязь этих методов между собой. Мы увидели многообразие подходов к вопросу суммирования расходящихся рядов. Регулярность каждого метода мы устанавливали во всех случаях. К сожалению, я не всегда имел возможность достаточно углубиться в вопрос о взаимоотношении этих методов между собой. А между тем может случиться, что два метода имеют пересекающиеся области приложимости, или, наоборот, может оказаться и что два метода приписывают одному и тому же расходящемуся ряду различные “обобщенные суммы”.

Теория рядов является важным и широко используемым разделом математического анализа, или другими словами бесконечные ряды являются важнейшим орудием исследования в математическом анализе и его приложениях.

Список использованной литературы

1. Выгодский М.Я. Справочник по высшей математике. М., 1982.

2. Данко П.Е., Попов А.Г. Высшая математика в упражнениях и задачах, часть 1, М., 1974.

3. Зельдович Я.Б. Высшая математика для начинающих. М., 1970.

4. Леонтьев А.Ф. Целые функции. Ряды экспонент. М., 1983.

5. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, I, II т., М., 1966.

[1] Хотя формулировка метода “обобщенного суммирования ” принадлежит Пуассону, этот метод называют всё же методом Абеля, так как Пуассон применил этот метод лишь в частном случае. Поэтому в дальнейшем мы будем называть этот метод – методом Пассона-Абеля.

[2] Здесь и дальше учитываются соотношения типа (15)

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы