Целочисленные функции
Следовательно, равенство верно для любого натурального n. Что и требовалось доказать.
Найдём аналогичное выражение для , т.е. найдём коэффициенты a, b, c.
Поскольку — есть корень третьей степ
ени из 1, то и .
Так как , то .
При делении числа на 3 возможны только три различных остатка: либо 0, либо 1, либо 2.
Если , то .
Если , то .
Если , то .
Решая систему , находим a, b, c.
, , .
Итак, получаем следующую формулу:
.
Задача 14.
Какому необходимому и достаточному условию должно удовлетворять вещественное число , чтобы равенство выполнялось при любом вещественном ?
Решение:
При любом вещественном и равенство выполняется Û b — целое число.
Если b — целое число, то функция непрерывная, возрастающая функция (так как ). Пусть — целое число, т.е. . Тогда , так как и . Выражая через , получим — целое, как натуральное число в неотрицательной целой степени. Поэтому можно применить формулу (6) и получить равенство .
Если b — не целое число, то при равенство не будет выполняться, так как
Итак, если , то равенство выполняется при любом вещественном тогда и только тогда, когда b — целое число.
Ответ: b — целое число.
Задача 15.
Найдите сумму всех чисел, кратных x, в замкнутом интервале [a, b], при .
Решение:
Числа, кратные имеют вид , где . Нужно просуммировать те из чисел , для которых . Учитывая, что и (4), имеем
Û Û .
Нам нужно вычислить следующую сумму:
.
В этой сумме можно вынести за скобки, а в скобке останется сумма всех чисел от до включительно. Применяя формулу арифметической прогрессии получаем:
.
Задача 16.
Покажите, что n-й член последовательности 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,… равен. (Каждое число m входит в данную последовательность m раз.)
Решение:
В этой последовательности чисел меньших будет , а чисел не превосходящих будет . Поэтому, если xn=m, то
Оценим n:
Û
Û Û
Û Û
Û Û
Û Û
Û Û
Û Þ
Þ .
Следовательно, .
Задача 17.
Найдите и докажите связь между мультимножествами Spec(α) и Spec(α/(α+1)), где α — некоторое положительное вещественное число.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах