Векторная алгебра и аналитическая геометрия

Свойства скалярного произведения:

1) ; 2) ; 3) ; 4) , причем width=123 height=25 src="images/referats/11812/image050.png">.

Пример 2. Найти угол между векторами и , если , , , .

Решение. Используем формулу . Определим координаты векторов и , учитывая, что при сложении векторов мы складываем одноименные координаты, а при умножении вектора на число – умножаем на это число каждую координату этого вектора, а: , .

Найдем скалярное произведение векторов и и их длины. , , . Подставив в формулу, получим . Отсюда .

Определение. Векторным произведением вектора на вектор называется вектор (другое обозначение ), который:

а) имеет длину , где – угол между векторами и ;

б) перпендикулярен векторам и () (то есть, перпендикулярен плоскости, в которой лежат векторы и );

в) направлен так, что векторы , , образуют правую тройку векторов, то есть из конца третьего вектора кратчайший поворот от первого ко второму виден против часовой стрелки (рис.2).

Координаты векторного произведения вектора на вектор определяются по формуле:

Геометрический смысл векторного произведения: модуль вектора равен площади параллелограмма, построенного на векторах и .

Свойства векторного произведения:

1) ; 2) ;

3) ; 4) и коллинеарны.

Пример 3. Параллелограмм построен на векторах и , где , , . Вычислить длину диагоналей этого параллелограмма, угол между диагоналями и площадь параллелограмма.

Решение.

, ,

.

Угол между диагоналями обозначим буквой , тогда

Следовательно, .

Используя свойства векторного произведения, вычислим площадь параллелограмма:

Определение. Смешанным произведением трех векторов , , называется скалярное произведение вектора на вектор :

.

Если то смешанное произведение можно вычислить по формуле:

.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы