Механизм поперечно-строгального станка
Vотн и ωОТН - относительные линейная и угловая скорости звеньев, образующих пару ;
f = 0,16
f ‘ = 0,24
r = 0,02 m
Суммарная мощность :
NТР = N10 + N12 + N23 + N34 + N45 + N30 = 1086,4
Мощность привода на преодоление полезной нагрузки :
N = Q · Vв = 7500 · 0,0714 = 535,5 (Вт) .
Мгновенная потребная мощность двигателя :
N = Npy + Nтр ;
N = 540 + 1086,4
= 1626,4 (Вт)
2.7 Определение кинетической энергии и приведенного момента инерции механизма
Кинетическая энергия механизма равна сумме кинетических энергий звеньев, составляющих механизм, и рассчитывается для 3-го положения.
Тмeх = Σ Тi = Т3 + Т4 + Т5
Кинетическая энергия звена 3 рассчитывается по формуле :
Т3 = (J3 · ω3)/2 ;
J3 = J3’ + J3’’;
J3’ = (m3’ · O2A3)/3 = (5 · 0,147 )/3 = 0,245 кг·м ;
J3’’ = (m3’’ · O2B )/3 = (2 · 0,07 )/3 = 0,047 кг·м ;
J3 = 0,245 + 0,047 = 0,292 кг·м ;
Т3 = (0,292 · 10,2 )/2 = 1,5 Дж;
Кинетическая энергия звена 4 рассчитывается по формуле :
Т4 = (J4 · ω4 )/2 + (m4 · V )/2 ;
J4 = (m4 · BC )/12 = (80·0,21 )/12 = 1,4 кг·м ;
V = ω4 · BC/2 = 11,1·0,21/2 = 1,17 м/с ;
T4 = (1,4·11,1 )/2 + (80·1,17 )/2 = 54,57 Дж ;
Движение звена 5 рассматриваем как поступательное. Кинетическая энергия :
Т5 = (m5 · Vc )/2 = (140· 0,072 )/2 = 5,04 Дж ;
Тмех = Т3 + Т4 + Т5 = 1,5 + 54,57 + 5,04 = 61,11 Дж .
За звено приведения принимаем кривошип.
Jпр = (2·Tмех)/ω1 = (2·61,11)/13,816 = 8,85 кг·м ;
2.8 Определение сил инерции
Для аналитического вычисления сил инерции воспользуемся аналитическим расчётом рычажного механизма.
Ускорение
ε3 = aτA3O2 / lO2A = 12 · KA / 0,147 = 0,327
ε4 = aτCB / lCB = 40 · KA / 0,21 = 0,762
Момент
М = J · ε H·м ;
Момент инерции
J’3 = ((m · 02A2) / 12) = 0,009 кг·м;
J”3 = 0,00082 кг·м
J4 = 0,294 кг·м
Тогда М’3 = 0,009 · 0,327 = 0,003 H·м .
М”3 =0,00082 · 0,327 = 0,00027 H·м
M4 = 0,294 · 0,762 = 0,224 Н·м
Составим программу:
Sub analit()
f0 = 0.24
w1 = 13.8
e1 = 0
n = 12
l1 = 0.035
l2 = 0.21
l3 = 0.07
l4 = 0.147
h = 0.14
m2 = 7
m3 = 80
m5 = 140
lk = 0.37
Worksheets(1).Range("a1") = "результаты аналитического расчета"
Worksheets(1).Range("a2") = "начальные параметры"
Worksheets(1).Range("a3") = "f0"
Worksheets(1).Range("b3") = f0
Worksheets(1).Range("a4") = "w1"
Worksheets(1).Range("b4") = w1
Worksheets(1).Range("a5") = "e1"
Worksheets(1).Range("b5") = e1
Worksheets(1).Range("a6") = "полученные значения"
Worksheets(1).Range("a7") = "N"
Worksheets(1).Range("b7") = "S"
Worksheets(1).Range("c7") = "V"
Worksheets(1).Range("d7") = "a"
df = 2 * 3.14 / n
f1 = f0 + df
For i = 0 To n
f1 = f1 - df
Worksheets(1).Cells(i + 8, 1).Value = i
'определение углов поворота
a = l1 * Cos(f1) + 14
b = l1 * Sin(f1)
aa = (a ^ 2 + b ^ 2 + l2 ^ 2 - l3 ^ 2) / (2 * a * l2)
bb = b / a
'определение угла f2
cf2 = -((aa + bb * ((1 - aa ^ 2 + bb ^ 2))) ^ 0.5) / (1 + bb ^ 2)
tf2 = (1 / ((cf2 ^ 2) - 1)) ^ 0.5
f2 = Atn(tf2)
If cf2 < 0 Then
tf2 = -tf2
f2 = Atn(tf2) + 3.14
End If
'определение угла f3
cf3 = (a + l2 * cf2) / l3
tf3 = (1 / ((cf3 ^ 2) - 1)) ^ 0.5
f3 = Atn(tf3)
If cf3 < 0 Then
tf3 = -tf3
f3 = Atn(tf3) + 3.14
End If
'определение угловых скоростей
i31 = (l1 * Sin(f1 - f2)) / (l3 * Sin(f3 - f2))
i21 = -(l1 * Sin(f1 - f3)) / (l2 * Sin(f2 - f3))
w3 = w1 * i31
w2 = w1 * i21
'определение угловых ускорений
i131 = (l1 * Cos(f1 - f2) + i21 ^ 2 * l2 - i31 ^ 2 * l3 * Cos(f3 - f2)) / (l3 * Sin(f3 - f2))
i121 = -(l1 * Cos(f1 - f3) - i31 ^ 2 * l3 + i21 ^ 2 * l2 * Cos(f2 - f3)) / (l2 * Sin(f2 - f3))
e3 = w1 ^ 2 * i131 + e1 * i31
e2 = w1 ^ 2 * i121 + e1 * i21
'определение перемещения питателя
s = h * (Tan(0.261666) - Tan(f3 - 1.57))
Worksheets(1).Cells(i + 8, 2).Value = s
'определение скорости питателя
v = h * w3 / ((Cos(f3 - 1.57)) ^ 2)
Worksheets(1).Cells(i + 8, 3).Value = v
'определение ускорения питателя
usk = -h * (e3 * Cos(f3 - 1.57) + 2 * w3 ^ 2 * Sin(f3 - 1.57)) / ((Cos(f3 - 1.57)) ^ 3)
Worksheets(1).Cells(i + 8, 4).Value = usk
'определение ускорений звеньев
a1n = w1 ^ 2 * l1
a2n = w2 ^ 2 * l2 / 2
a2t = e2 * l2 / 2
a2 = ((a1n * Cos(f1) + a2n * Cos(f2) + a2t * Cos(f2 - 1.57)) ^ 2 + (a1n * Sin(f1) + a2n * Sin(f2) + a2t * Sin(f2 - 1.57)) ^ 2) ^ 0.5
a3n = w3 ^ 2 * (lk / 2 - l3)
a3t = e3 * (lk / 2 - l3)
a3 = (a3n ^ 2 + a3t ^ 2) ^ 0.5
a5 = usk
'определение сил и моментов инерции
Worksheets(2).Cells(i + 8, 1).Value = i
u3 = -m3 * a3
Worksheets(2).Cells(i + 8, 2).Value = u3
mu3 = -m3 * l3 ^ 2 * e3 / 12
Worksheets(2).Cells(i + 8, 3).Value = mu3
u4 = -m4 * a4
Worksheets(2).Cells(i + 8, 4).Value = u4
mu4 = -m4 * lk ^ 2 * e4 / 12
Worksheets(2).Cells(i + 8, 5).Value = mu4
u5 = -m5 * a5
Worksheets(2).Cells(i + 8, 6).Value = u5
Next i
Worksheets(2).Range("a1") = "результаты аналитического расчета"
Worksheets(2).Range("a2") = "начальные параметры"
Worksheets(2).Range("a3") = "m3"
Worksheets(2).Range("b3") = m3
Worksheets(2).Range("a4") = "m4"
Worksheets(2).Range("b4") = m4
Worksheets(2).Range("a5") = "m5"
Worksheets(2).Range("b5") = m5
Worksheets(2).Range("a6") = "полученные значения"
Worksheets(2).Range("a7") = "N"
Worksheets(2).Range("b7") = "u3"
Worksheets(2).Range("c7") = "mu3"
Worksheets(2).Range("d7") = "u4"
Worksheets(2).Range("e7") = "mu4"
Worksheets(2).Range("f7") = "u5"
End Sub
3. Геометрический расчёт прямозубой передачи. Проектирование планетарного редуктора
3.1 Геометрический расчёт прямозубой передачи
Исходные данные :
Число зубьев шестерни : Z5 = 12.
Число зубьев колеса : Z6 = 30.
Модуль зубчатых колёс : m = 6.
Коэффициент высоты головки : ha* = 1.
Коэффициент радиального зазора : с* = 0,25.
Zсум = Z5 + Z6 = 12 + 30 = 42 > 34, =>,
коэффициент смещения шестерни определяется по формуле :
Х5 = (17 – Z5)/17 =(17 – 12)/17 = 0,294
а коэффициент смещения колеса :
X6 = - Х5 = -0,294
Угол профиля исходного профиля = 20˚ .
Делительное межосевое расстояние :
а = 0,5 · m · Zсум.= 0,5 · 6 · 42 = 126 mm
Коэффициент воспринимаемого смещения:
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды