Разработка привода цепного транспортера
Как видно из таблицы, значительных расхождений расчётных величин нет. Наибольший разброс значений наблюдается между данными, рассчитанными вручную или в «Восходе», и полученными в APM величинами (относительная погрешность до 10%). Различия в рассчитанных напряжениях, я думаю, появились из-за использования различных таблиц соотношений параметров материалов. К тому же APM и «Восход» не полность
ю учитывают особенности распределения нагрузки во времени, вид которой нельзя передать этим программам.
2.6. Расчет (выбор) подшипников и уплотнений
Проверяем подшипники, предварительно назначенные в пункте 2.3.
2.6.1 Подшипники выходного вала
Были назначены радиальные однорядные шарикоподшипники лёгкой узкой серии №211 с параметрами: динамическая грузоподъёмность C=34000 Н, статическая грузоподъёмность C0=25600 Н, Lh – 20000 часов (по таблице 16.4[3]), t<100˚C.
Определим силы в зацеплении: Ft=2T/d=2·601,7/0,2425=4962,5 Н, Fa=Ft·tgβ=Ft·tg0˚=0 Н, Fr=Ft·tgα=Ft·tg20˚=1806,2 Н.
Расчёт на выносливость
(2.6.1),
Где сд – динамическая грузоподъёмность подшипника (эквивалентная радиальная нагрузка, которую подшипник выдержит 106 циклов при работе без отказа с вероятностью 90%);
P – эквивалентная нагрузка;
p – показатель степени (для шарикоподшипников равен 3);
a1 – коэффициент надёжности (у нас равен 1);
a23 – коэффициент работы (в нашем случае равен 1);
L – ресурс в миллионах оборотов.
P=(XVFr+YFa)·kδ·kt (2.6.2),
где V – коэффициент вращения кольца (в нашем случае равен 1);
X, Y – коэффициенты совместного влияния нагрузок;
kδ – коэффициент безопасности (учитывает условия работы);
kt – температурный коэффициент (для t<100˚C равен 1).
Ресурс в миллионах оборотов выражается через долговечность формулой:
(2.6.3)
Осевая нагрузка равна нулю, тогда по таблице 16.5[3] X=1, Y=0. По рекомендации к формуле 16.29[3] принимаем kδ=1,4.
Рассчитаем эквивалентную нагрузку по (2.6.2): Р=(1·1·1806,2+0)·1·1,4=2528,7 Н. Найдём ресурс подшипника (млн. оборотов). Отсюда динамическая грузоподъёмность подшипника
Условие Сд<[Сд]=Спаспортное=34000 Н выполняется, значит, увеличивать серию по ширине не придётся.
Проверка на статическую грузоподъёмность не проводится из-за большой окуружной скорости на валах.
2.6.2 Подшипники входного вала
Были назначены радиальные однорядные шарикоподшипники лёгкой узкой серии №205 с параметрами: динамическая грузоподъёмность C=14000 Н, статическая грузоподъёмность C0=6950 Н, Lh – 20000 часов (по таблице 16.4[3]), t<100˚C.
Определим силы в зацеплении: Ft=2T/d=2·50,9/0,064=1590,6 Н, Fa=Ft·tgβ=Ft·tg0˚=0 Н, Fr=Ft·tgα=Ft·tg20˚=578,9 Н.
Коэффициенты X, Y, kδ, kt, а1, а23 для формул (2.6.1) и (2.6.2) остаются прежними. Рассчитаем эквивалентную нагрузку по формуле (2.6.2): Р=(1·1·578,9+0)·1,4·1=810,5 Н. Найдём ресурс подшипника (млн. оборотов). Отсюда динамическая грузоподъёмность подшипника
Условие Сд<[Сд]=Спаспортное=14000 Н выполняется, значит, увеличивать серию по ширине не придётся.
2.6.3 Подшипники промежуточного вала
Были назначены также радиальные однорядные шарикоподшипники лёгкой узкой серии №207 с параметрами: динамическая грузоподъёмность C=20100 Н, статическая грузоподъёмность C0=13900 Н, Lh – 20000 часов (по таблице 16.4[3]), t<100˚C.
Определим силы в зацеплении: Ft=2T/d=2·188,8/0,0775=4872,3 Н, Fa=Ft·tgβ=Ft·tg0˚=0 Н, Fr=Ft·tgα=Ft·tg20˚=1773,4 Н.
Коэффициенты X, Y, kδ, kt, а1, а23 для формул (2.6.1) и (2.6.2) остаются прежними. Рассчитаем эквивалентную нагрузку по формуле (2.6.2): Р=(1·1·1773,4+0)·1,4·1=2482,7 Н. Найдём ресурс подшипника (млн. оборотов). Отсюда динамическая грузоподъёмность подшипника
Условие Сд<[Сд]=Спаспортное=20100 Н выполняется, значит, увеличивать серию по ширине не придётся.
2.7 Проверочные расчеты валов на прочность, жесткость и колебания
Для выходного вала редуктора рассчитаны следующие величины: Т4=601,7 Н·м, n5=57,3 об/мин, ширина колеса: b3=64 мм, предел прочности sв=850 МПа, диаметр вала в месте посадки колеса считаем 55 мм. Диаметр колеса – 256 мм.
Выбираем материал вала сталь 45, улучшенная. [t]=19 МПа, предел текучести sт = 450 МПа, предел прочности sв=750 МПа. Запишем геометрические параметры вала (см. рис. 7): a=60 мм, b=60 мм, c=55 мм, l=a+b=120 мм. Вал нагружен силами Ft=2T/d=2·601,7/0,2425=4962,5 Н, Fa=Ft·tgβ=Ft·tg0˚=0 Н, Fr=Ft·tgα=Ft·tg20˚=1806,2 Н, действующими в полюсе зацепления, и крутящим моментом Т4 на выходном конце муфты.
Определяем допускаемую радиальную нагрузку на выходном конце вала, полагая, что редуктор общего назначения(с. 298[3]):
(2.7.1)
Для Т4=601,7 получим FM=250·24,5=6125 Н.
Определяем реакции в опорах и строим эпюры изгибающих и крутящих моментов (см. рис. 7).
рис. 7 Эпюры нагрузок выходного вала
Рассмотрим реакции от силы Fr, действующей в вертикальной плоскости. Сумма проекций Fr=A1+B1. Сумма моментов относительно опоры А: -Fr·a+B1·l=0. Из последнего равенства получим B1==1926,5∙0,5=963,25 Н. Тогда A1=Fr-B1=1926,3-963,25=963,25 Н.
Реакция от сил Ft и FM, действующих в горизонтальной плоскости (FM прикладываем так, чтобы она увеличивала прогиб от Ft – худший случай). Проекции сил A2+B2+FM-Ft=0; сумма моментов: -Ft·a+B2·l+FM·(l+c)=0. Тогда рассчитаем: B2=Ft·a/l - FM·(l+c)/l=4962,5·0,5 – 6125·175/120= -6451 Н. Знак «-» значит, что реальная реакция направлена противоположно тому направлению, которое мы выбрали. A2=Ft-FM-B2= 5288,5 Н.
Для построения эпюр крутящих и изгибающих моментов воспользуемся формулами со страницы 298[3].
Момент от радиальной силы
(2.7.2)
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды