Порошковая металлургия

Для получения изделий сложной формы используют шликерное литьё. После заполнения формы жидкая составляющая шликера удаляется нагревом.

Спекание порошковых материалов.

Вид термической обработки, позволяющий получить конечные свойства материала и изделия, называется спеканием. Оно заключается в нагреве и выдержке сформованного изделия (заготовки) при температуре ниже точки п

лавления основного компонента. Для многокомпонентных систем различают твёрдофазное и жидкофазное спекание.

Твёрдофазное спекание сопровождается возникновением и развитием связей между частицами, образованием и ростом контактов (шеек), закрытием сквозной пористости, укрупнением и сфероидизацией пор, уплотнением заготовки за счёт усадки (рис. 4, а). В процессе спекания происходит массоперенос вещества через газовую фазу за счёт поверхностной и объёмной диффузии, вязкого течения, течения, вызванного внешними нагрузками (спекание под давлением). При спекании наблюдается также рекристаллизация (рост одних зёрен за счёт других той же фазы). Уплотнение при нагреве в основном происходит за счёт объёмной деформации частиц, осуществляемой путём объёмной самодиффузии атомов.

Рис. 4. Поверхности излома спечённых порошковых материалов (а) и образование межпластинчатого контакта в условиях жидкофазного спекания (б)

Жидкофазное спекание протекает в присутствии жидкой фазы легкоплавкого компонента, которая хорошо смачивает твёрдую фазу, улучшает сцепление между частицами, увеличивает скорость диффузии компонентов, облегчает перемещение частиц друг относительно друга. Плохая смачиваемость препятствует уплотнению. Твёрдая фаза в зоне контакта может растворяться в жидкой, интенсифицируя процессы массопереноса (рис. 4, б). Различают системы с нерастворимыми компонентами, с ограниченной растворимостью и со значительной взаимной растворимостью компонентов. Жидкофазное спекание таких систем имеет свои особенности, связанные с преобладанием одной из стадий:

Ø вязкое течение жидкости – перегруппировка частиц;

Ø растворение – осаждение; образование жёсткого скелета.

Совмещение процесса прессования и спекания наблюдается при горячем прессовании, которое производится при температуре (0,5…0,9)Тпл основного компонента. Высокая температура прессования позволяет снизить в несколько десятков раз давление прессования. Время выдержки составляет от 15…30 мин до нескольких часов. Горячее прессование применяют для труднопрессуемых порошков с целью получения высоких физико-механических свойств. Горячепрессованные детали имеют мелкозернистую структуру. Пресс-форму, в которой осуществляют горячее прессование, изготавливают из жаропрочных материалов, а при прессовании тугоплавких соединений – из графита, прочность которого с увеличением температуры повышается.

Свойства и области применения порошковых материалов.

Антифрикционные пористые материалы изготавливают на основе порошков железа или меди с пропиткой жидкой смазкой (маслом) или с добавками твёрдой смазки (графит, свинец, дисульфид молибдена, сернистый цинк). Данные материалы обладают высокими триботехническими свойствами, хорошей прирабатываемостью, высокой теплопроводностью, достаточной вязкостью при ударной нагрузке, обеспечивают низкий коэффициент трения.

К фрикционным относят материалы с высоким коэффициентом трения. Они обладают высокой фрикционной теплостойкостью и коррозионной стойкостью. Их изготавливают на основе меди или железа с металлическими и неметаллическими компонентами для деталей, работающих в масле (75%) и при сухом трении. Фрикционные изделия состоят из стальной основы и фрикционных накладок, которые припекаются к основе под давлением.

Электротехнические материалы подразделяются на электроконтактные (металлические, металлографитовые, металлооксидные и металлокарбидные), магнитомягкие (железоникелевые сплавы, сплавы железа с кремнием и алюминием или хромом и алюминием), магнитотвёрдые (сплавы на основе Fe–Al–Ni(Co), называемые альни, альнико, магнико), магнитодиэлектрики (карбонильное железо, пермаллой, альсифер), ферриты (Fe3О4 с добавками NiO, MgO, MnO, ZnO).

Аморфные материалы, получаемые быстрым (со скоростью 105 …106 0С/с) охлаждением расплава (Fe40N40P10B8O), являются новым классом магнитных материалов, из которых изготавливают магнитные экраны, трансформаторы и электродные приборы.

Спечённые конструкционные материалы изготавливаются на основе конструкционной стали (углеродистой, меднистой, кремнистой, молибденовой, хромомолибденовой), титановых и алюминиевых сплавов.

Повышение твёрдости обрабатываемых заготовок потребовало расширения диапазона используемых режущих материалов от твёрдых сплавов, минералокерамических материалов до искусственных алмазов и других сверхтвёрдых материалов, получаемых методами порошковой металлургии.

Твёрдые сплавы используют в режущих и контрольно-измерительных инструментах, рабочих вставках фильер при волочении, матрицах и пуансонах при штамповке и прессовании. В машиностроении и приборостроении широко применяют армированные твёрдыми сплавами детали. Например, в текстильной промышленности применяют твёрдые сплавы для направляющих колец и других трущихся деталей; в порошковой металлургии твёрдые сплавы используют для размольных тел и прессового инструмента.

Минералокерамику применяют для получистовой и чистовой обработки резанием чугунов, закалённых и улучшенных сталей, цветных и тугоплавких сплавов при высоких (до 800 м/мин) скоростях резания. Основу минералокерамики составляет - модификация Al2O3 (электрокорунд) зернистостью до 1 мкм. Плотность кермета (керамики с металлической связкой) составляет 3,96 г/см3 , твёрдость – HRA до 92 единиц. Оксидокарбидная керамика имеет плотность 4,2 … 4,6 г/см3 и твёрдость – HRA 92 … 94 единицы.

Эрозионно-стойкие и потеющие материалы обладают комплексом свойств, которые невозможно получить в сплавах. Они изготавливаются на основе тугоплавких металлов или углерода в виде композиций.

Например, путём пропитки вольфрамового или углеродного каркасов жидкой медью или серебром. Детали из такого материала работают в двигателях при температуре свыше 2500 0С. Во время работы медь (серебро) испаряется, что понижает тепловой поток и улучшает условия работы вольфрамового или углеродного каркасов.

Заключение.

Итак, изучив порошковую металлургию можно сделать вывод, что технология получения металлокерамических материалов и деталей состоит из ряда последовательных операций: получение металлических порошков, формование, спекание.

Совокупность основных и дополнительных технологических операций (резание, сверление, шлифование, калибрование и др.) позволяет решать с помощью порошковой металлургии две задачи:

1. Изготавливать материалы и изделия с особыми составами, структурой и свойствами, которые недостижимы другими методами производства;

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы