Устройство и принцип работы растрового электронного микроскопа

Истинная быстрота действия Sвсегда меньше этой величины из-за ограниченной проводимости входных коммуникаций в насосе между отверстием входного патрубка и камерой, а также за счет обратного потока газов. Эта разница становится особенно заметной при приближении к

остаточному давлению. Отношение называемое объемным к.п.д. насоса, составляет обычно 0,75—0,85 при давлениях Па (1 мм рт. ст.) и уменьшается до нуля при P

В связи с отсутствием заметного перетекания газа с выхода на вход в рабочей камере быстрота действия насосов с масляным уплотнением практически не зависит от рода откачиваемого газа, так как разница в величине проводимости входных коммуникаций по разным газам очень мало сказывается на быстроте действия насоса.

При неизменной проводимости входных коммуникаций быстрота действия любого насоса при произвольном впускном давлении р определяется уравнением

где P — остаточное давление;

S— быстрота действия насоса при впускном давлении

В насосах с масляным уплотнением при впускных давлениях ниже 10І - 10 Па (~ 1—0,1 мм рт. ст.) проводимость входных коммуникаций заметно уменьшается, в то же время уравнение (3), учитывающее влияние на быстроту действия только обратного потока, не учитывает уменьшения проводимости входных коммуникаций; поэтому применительно к этим насосам уравнение (3) в области низких давлений может использоваться только для грубых оценок быстроты действия.

Для точных расчетов, связанных с использованием значений быстроты действия в области низких давлений, не обходимо пользоваться экспериментальными зависимостями быстроты действия от впускного давления.

Для насосов с масляным уплотнением такие измерения проводят в области давлений от ~10і Па (несколько мм рт. ст.) до p. Обычно считают, что при высоких давлениях (p ≈ 10і Па) быстрота действия насоса постоянна.

Мощность, потребляемая насосами с масляным уплотнением, затрачивается на преодоление трения в механизме насоса (мощность трения или мощность потерь) и на процесс перемещения и сжатия газа (индикаторная мощность.)

2.3 Диффузионный насос

Диффузионные насосы предназначены для работы в области высокого и сверх-высокого вакуума, т. е. при давлениях ниже 10 Па (10 мм рт. ст.).

Отличительной особенностью характеристики диффузионных насосов является постоянство быстро ты действия в рабочем диапазоне давлений, обусловленное сохранением молекулярного режима течения газа в районе первого сопла.

Конструкции паромасляных диффузионных насосов имеют ряд особенностей, обусловленных недостатками масел, используемых в качестве рабочих жидкостей. Это прежде всего устройства, обеспечивающие фракционирование (т. е. разделение на фракции) неоднородных масел, причем тяжелые фракции (с низким давлением насыщенного пара) направляются в сопло первой (высоковакуумной) ступени, чем обеспечивается низкое остаточное давление и высокое быстродействие насоса в целом, а легкие фракции (с высоким давлением насыщенного пара) направляются в сопло последней ступени, обеспечивая высокое выпускное давление. Насосы с таким устройством называются фракционирующими или разгоночными. На рисунке 2.5,а показано устройство металлического высоковакуумного разгоночного диффузионного насоса Н-5Т. Сварной корпус 1 насоса выполнен из мало углеродистой стали с наваренной на него рубашкой водяного охлаждения, паропровод 2 с двумя зонтичными соплами изготовлен из алюминия; последней выходной ступенью является эжектор З.

Рисунок 2.5 - Паромасляный насос Н-5Т (а) и устройство и действие лабиринтных колец для фракционирования масла (б): 1- корпус; 2 — паропровод; З — эжекторная ступень; 4 — ловушка для паров масла; 5 — электронагреватель; 6 — лабиринтные кольца.

Фракционирование масла, стекающего в кипятильник с периферии по стенке корпуса, осуществляется с помощью лабиринтных колец, удлиняющих путь масла (рисунок 2.5,б) до поступления в центральную зону кипятильника, откуда питается паром высоковакуумное сопло, так что легкие фракции масла успевают испариться на периферии кипятильника, откуда они поступают во второе зонтичное и эжекторное сопла насоса.

Остаточное давление пароструйного насоса в значительной мере определяется степенью фракционирования масла и содержанием газов в масле, стекающем в кипятильник, так как чем лучше обезгажено масло, тем меньше газов заносится паровой струей на впуск насоса. Лабиринтные кольца, показанные на рисунке 2.5, не прилегают плотно к днищу кипятильника, в связи с чем не обеспечивают достаточного фракционирования масла.

Проведенное рассмотрение показывает, что характеристики паромасляных насосов (диффузионных и бустерных) определяются как конструкцией насоса, так и родом рабочей жидкости.

Основные характеристики пароструйных насосов существенно зависят от молекулярной массы откачиваемого газа, что связано с большей противодиффузией легких газов (водород, гелий) через паровую струю по сравнению с тяжелыми (аргон, азот, кислород).

Теоретическая быстрота действия S паровой струи при молекулярном режиме течения газа определяется как произведение величины площади А (мІ) кольцевого зазора между корпусом и кромкой верхнего сопла на величину объема газа, падающего на единицу площади (при данном впускном давлении):

где Т — температура газа, К;

М — молекулярная масса газа, т. е. S также зависит от молекулярной массы газа.

Истинная быстрота действия насоса S за счет отражения части молекул газа от струи и противодиффузии газа меньше теоретического значения S; отношение называемое вакуум-фактором (или коэффициентом Хо) насоса (или струи), составляет обычно для воздуха величину 0,3—0,5 и также зависит от рода газа.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы