Уравнения и характеристики распространения волн реального электромагнитного поля

Таким образом, уравнения (5) первичной исходной взаимосвязи компонент ЭМ поля и поля ЭМ векторного потенциала, безусловно, фундаментальны и объективно являются основными уравнениями современной полевой теории электромагнетизма.

Далее, как и следовало ожидать, из этих новых систем электродинамических уравнений непосредственно получаем (аналогично выводу формулы (2)) соотношения балан

са:

судя по размерности, для потока момента ЭМ импульса из уравнений (6)

(9)

для потока электрической энергии из уравнений (7)

.(10)

и, наконец, для потока магнитной энергии из уравнений (8)

.(11)

Все это действительно подтверждает и объективно доказывает, что, наряду с ЭМ полем с векторными компонентами и , в Природе существуют и другие поля: поле ЭМ векторного потенциала с компонентами и , электрическое поле с компонентами и , магнитное поле с и . Таким образом, структура из двух векторных взаимно ортогональных компонент реализует способ существования конкретного электродинамического поля, делает принципиально возможным его перемещение в пространстве в виде потока соответствующей физической величины.

Можно убедиться, следуя логике рассуждений вывода волнового уравнения для поля вектора электрической напряженности , что форма и структура представленных систем уравнений (1), (6) - (8) говорят о существовании волновых решений для всех четырех компонент реального электромагнитного поля. Тем самым описываются волны конкретных вышеперечисленных двухкомпонентных полей посредством одной из парных комбинаций четырех указанных волновых уравнений. В итоге возникает очевидный вопрос: что это за волны, и каковы характеристики их распространения?

Поскольку структурная симметрия уравнений систем (1) и (6) математически тождественна, а волновые решения уравнений (1) выше уже проанализированы, то далее анализ условий распространения плоских электродинамических волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их необычные структуры между собой также тождественны, а волновые решения уравнений в литературе не рассматривались.

Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны с компонентами и для системы (7) либо магнитной волны с компонентами и для системы (8), которые представим комплексными спектральными интегралами. Тогда, проводя аналогичные рассуждения, как и для рассматриваемого выше пакета плоской ЭМ волны, получим соотношения для волны электрического поля и . Соответственно, для магнитного поля и . Таким образом, для систем уравнений (7) и (8) имеем общее выражение: .

В конкретном случае среды идеального диэлектрика () из с учетом формулы следует обычное дисперсионное соотношение [2], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:

и .

Главная специфика здесь состоит в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на , то есть характер поведения компонент поля таких волн в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, данный результат математически тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5)). Однако концептуально, с физической точки зрения такой факт примечателен и требует анализа.

Справедливости ради здесь уместно сказать, что впервые о реальности магнитной поперечной волны с двумя ее компонентами и , сдвинутыми при распространении по фазе колебаний на , еще в 1980 году официально заявил в виде приоритета на открытие Докторович [6], и свое достижение он с удивительным упорством, достойным лучшего применения, безуспешно пытается донести до других все эти долгие годы. Весьма печально, ибо только Время – высший судья, и именно оно расставит все и всех по своим местам!

Аналогичные рассуждения для пакета плоской волны векторного потенциала с компонентами и в системе (6) дают и , откуда снова получаем известное выражение . А потому для среды диэлектрика () дисперсионное соотношение для уравнений (6) будет при комплексных амплитудах в волновых решениях: , где сами решения описывают плоские однородные волны, компоненты поля которых, как и в случае ЭМ волн, синфазно распространяются в пространстве.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы