Ремонт пассажирской буксы

Напряжение дуги определяется по формуле (7.1.4):

Скорость подачи определяется пол формуле (7.1.5), коэффициент расплавления электродной проволоки сплошного сечения выбирается в пределах 8 – 12 г./А ∙ ч, формула (7.1.6):

=56 src="images/referats/13263/image037.png">

На качество восстанавливаемого слоя влияет шаг наплавки, который определяется шириной наплавленного валика и зависит от напряжения дуги:

(7.2.1)

Скорость наплавки:

(7.2.2)

где Кп – коэффициент перехода электродного металла в наплавленный,

а – коэффициент, учитывающий отклонение площади наплавленного валика от площади прямоугольника, а = 0,7;

Коэффициент перехода электродного металла в наплавленный определяется по формуле:

(7.2.3)

где Ψ – коэффициент потерь электродного металла, Ψ = 10%;

При выборе скорости наплавки следует иметь ввиду, что между скоростью подачи электродной проволоки и скоростью наплавки должно быть выдержано соотношение Vэл/ Vн, равное 1,5 – 2,5. Данное требование выполняется: Vэл/ Vн= 86,23/58,02 = 1,5.

Амплитуда вибрации, мм, конца электродной проволоки:

(7.2.4)

Меньшим значениям напряжения на дуге соответствует и меньшая амплитуда вибрации электродной проволоки.

Вылет электрода устанавливается в пределах 10 – 12 мм.

Индуктивность сварочной цепи образуется за счёт собственной индуктивности источника питания и внешней индуктивности сварочной цепи. Так как собственная индуктивность применяемых выпрямителей и генераторов мала, то в цепь включают дополнительную индуктивность.

В качестве индуктивного сопротивления можно применять дроссели РСТЭ-24 L = 0,12 Гн.

Наплавка производится на постоянном токе обратной полярности источниками с жесткой внешней характеристикой.

Для защиты наплавленного металла применяют жидкость, углекислый газ и флюс. Жидкость, подаваемая в хвостовую часть сварочной ванны. Хорошо ионизирует зону горения дуги и обеспечивает быстрое охлаждение детали, в результате чего деформация детали и размеры зоны термического влияния минимальны, а твёрдость и износостойкость наплавленного металла наиболее высоки. Недостатком применения жидкости является низкая усталостная прочность восстановленной детали, что обусловлено появлением пор, трещин и структурной неоднородности наплавленного слоя.

В качестве охлаждающей жидкости рекомендуется различные водные растворы, хорошо ионизирующие зону наплавки:

– водные раствор, содержащий 5% кальцинированной соды, 1% хозяйственного мыла и 0,5% глицерина;

– водный раствор, содержащий 20 – 30% глицерина и др.

При наплавке деталей из средней – и высокоуглеродистых и легированных сталей расход жидкости составляет 0,3 – 0,5 л/мин, для низкоуглеродистых – 1 л/мин и более. При наплавке тонкостенных деталей малых диаметров расход жидкости может находиться в пределах 3 – 5 л/мин.

Выполнив расчёт режимов двух автоматических наплавок: под плавленым флюсом и вибродуговой, проанализировав полученные значения скорости наплавки Vн, приходим к выводу, что экономичнее и эффективнее устранить износ поверхности детали с помощью наплавки имеющей большую скорость по величине, т.е. по средствам автоматической вибродуговой наплавки, при которой расчётное значение скорости Vн равно 104,4 м/ч.

8. Механическая обработка под размер

При этом способе ремонта деталь в результате механической обработки получает новый размер, отличающийся от первоначального (номинального) размера по рабочему чертежу, правильную геометрическую форму и требуемую шероховатость поверхности. Этот новый размер детали носит название ремонтного, и он может быть больше или меньше номинального.

Припуск на механическую обработку под размер подбираем исходя из геометрических размеров детали и величины износа обрабатываемой поверхности: δ0 = 0,6 мм.

Губину резания принимаем равной припуску на механическую обработку под размер: t = 0,6 мм.

Исходной величиной подачи при черновом фрезеровании является подача на один зуб Sz = 0,2 мм.

Скорость резания – окружная скорость фрезы, м/мин [8],

где Сv – константа, зависящая от вида обработки, свойств инструментального и обрабатываемого материалов, Сv = 332 мм;

D – диаметр фрезы, D = 90 мм;

T – период стойкости, Т = 180 мм;

Sz – подача на один зуб, Sz = 0,2 мм;

В-ширина фрезерования, В = D/(1,25 – 1,5) = 90/1,25 = 72 мм;

Z – число зубьев фрезы, Z = 16;

Kv – общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания;

показатели степени:

q = 0,2;

m = 0,2;

х = 0,1;

у = 0,4;

u = 0,2;

p = 0.

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания Kv определяется по формуле [8]:

где Кмv– коэффициент, учитывающий качество обрабатываемого материала, Кмv= 1;

Кпv– коэффициент, учитывающий состояние поверхности заготовки Кпv= 1;

Киv– коэффициент, учитывающий материал инструмента, Киv= 1,5;

Частота резания определяется по формуле (6.3), об/мин:

Контроль размера поверхности после проведенной наплавки и механической обработки производится линейкой или штангенциркулем, полученное значение сопоставляется с номинальным. В случае несоответствия, деталь подвергается повторной наплавке с последующей механической обработкой под размер и вновь контролируется.

9. Расчёт технологической себестоимости при автоматической наплавке под флюсом

На этапе нормирования технологического процесса устанавливают исходные данные, необходимые для расчетов норм времени и расхода материалов; производят расчет и нормирование затрат труда, норм расхода материалов, необходимых для реализации технологического процесса; определяют разряд работ и профессий исполнителей для выполнения операций в зависимости от этих работ.

Для решения данных задач используют нормативы времени, расхода и цены материалов.

Имеется несколько методов определения себестоимости: бухгалтерский, поэлементный расчетный и поэлементный нормативный.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы