Модернизация системы охлаждения двигателя ЗМЗ
На популярных автобусах "Икарус" ставят фрикционную муфту с пневмоприводном – своего рода сцепление, только на условную педаль здесь нажимает не нога, а сжатый воздух. Регулирование включения-отключения осуществляется, естественно, в зависимости от температуры охлаждающей жидкости.
Самые сложные системы умеют плавно регулировать скорость вентилятора. На многих легковых автомобилях
(в качестве примера назовем большинство БМВ, "Мерседесов"), а также на некоторых грузовиках (в том числе и на отечественном ЗИЛ-4331) в привод вентилятора встроена вискомуфта (рис. 5).
Коротко познакомим с работой такого устройства. Пока мотор не прогрелся, рабочая полость муфты пуста – специальная силиконовая жидкость находится в резервной полости. Двигатель прогревается, термоэластичная пластина постепенно открывает клапан, жидкость поступает в рабочую полость, и, когда проскальзывает между дисками, ее вязкость растет – муфта начинает передавать момент. С ростом температуры рабочая полость заполняется все больше, обороты вентилятора увеличиваются. Таким вот образом плавно регулируется производительность вентилятора. Вискомуфта сконструирована так, что на малых оборотах ее проскальзывание невелико, а при высоких – вентилятор заметно отстает. Это, повторим, позволяет заметно экономить энергию (а значит, и топливо) на высокой скорости, когда обдув радиатора достаточен.
На тяжелых дизельных двигателях для бесступенчатого регулирования оборотов в механике привода нередко используется гидравлическая муфта (рис. 6), подобная той, что работает в автоматических коробках передач. Обороты вентилятора изменяются здесь в зависимости от заполнения полости между ведущим и ведомым колесами муфты. Количество масла, которое поступает из системы смазки двигателя, регулируется автоматически по температуре охлаждающей жидкости.
Гидромуфта используется и на некоторых двигателях воздушного охлаждения, например на известных у нас с давних пор дизелях "Дойц", стоявших на грузовых автомобилях "Магирус". Охлаждающей жидкости в "воздушнике", понятное дело, нет, и подачей масла в муфту управляет терморегулятор, который учитывает температуру воздуха на выходе из системы охлаждения и температуру выхлопных газов. Работа системы зависит и от температуры масла: с ростом ее вязкость последнего снижается, а значит, горячего (и жидкого) масла в рабочую полость муфты поступает больше. Интересная особенность: корпус муфты одновременно служит центрифугой для очистки масла.
На современных легковых автомобилях, легких грузовиках и микроавтобусах радиатор двигателя чаще всего оснащают электрическим вентилятором (рис. 7), у которого немало преимуществ по сравнению с механическим. Электрический включается только по достижении некоего верхнего предела температуры, а когда она придет в норму, тут же выключается.
Результат – более стабильный температурный режим двигателя. К тому же он быстрей прогревается после пуска, меньше расходует топлива. Включившийся электровентилятор вращается достаточно быстро даже при низких оборотах двигателя – и этим снижает риск перегрева при больших нагрузках в тяжелых дорожных условиях. Механический вентилятор в таких случаях не всегда эффективен. Примерные схемы электроприводов вентилятора приведены на рисунках ниже.
Казалось бы, перечнем достоинств тему можно и закрыть, да качество электротехники не позволяет. В чем же главная причина капризов электровентилятора? Его мотор потребляет ток до 15–20 А, включаясь по команде датчика температуры охлаждающей жидкости в радиаторе (рис. 7). Чтобы большой ток не шел напрямую через нежные контакты датчика 1, в штатной конструкции применили разгрузочное реле 2. Решение естественное, но не безупречное – на российских автомобилях самым ненадежным элементом в системе охлаждения зарекомендовал себя как раз датчик температуры. Его контакты обгорают – и конец! И это, заметьте, при исправной работе разгрузочного реле.
И чем больше потрудился датчик температуры, тем выше вероятность отказа из за противоиндукции: в момент разрыва контактов исчезающее электромагнитное поле не только создает высокое напряжение на вторичной обмотке катушки зажигания, необходимое для свечи, но и немалое, до 400 В, напряжение противоиндукции в первичной обмотке. Вот оно-то и «прожигает» контакты: каждое их размыкание не проходит бесследно – а за тысячу километров пути их накапливается около 4 миллионов. Результат – эрозия контактов. Система работает хуже и хуже. Задавая себе шекспировский вопрос «кипеть или не кипеть?», водителю надо чаще глядеть на указатель температуры и прислушиваться к шуму под капотом. Но еще вернее – вовремя заменить старенький датчик, дабы зря не рисковать. Однако есть и другие возможности.
Первая: установить датчик включения вентилятора с тремя выходами – схема на рис. 8. Здесь уже нет разгрузочного реле. Электромотор включается постепенно – сначала через контакты 1 и 2 с добавочным резистором, а затем уже напрямую, через контакты 1 и 3. Результат – гораздо меньший эрозионный износ. Во многих случаях (при невысоких нагрузках на двигатель автомобиля) пара 1–3 почти не используется.
Второй вариант – на рис. 9: здесь сохраняется разгрузочное реле. Однако в цепи есть новый элемент – диод 4 (типа КД105 и близкие к нему). Зачастую диод впаивается непосредственно в реле (так удобней). В момент разрыва контактов датчика 1 тлетворное влияние на них ЭДС самоиндукции исключено – ток через диод уходит на «массу».
Подобное применение диодов очень характерно для зарубежных автогигантов «Мерседес», БМВ и т.д. В последнее время в продаже стали появляться готовые колодочки под такие реле – уже с впаянными туда диодом и проводками.
Завершая разговор о приводах вентиляторов, заметим: как ни совершенны многие из этих устройств, все же они не способны избавить двигатель внутреннего сгорания от одного из его серьезных недостатков – до 30% энергии топлива, "уходящие" в систему охлаждения, теряются безвозвратно.
Термостат 5 (см. рис. 1) автоматически поддерживает устойчивый тепловой режим двигателя. Как правило, термостат устанавливают на выходе охлаждающей жидкости из рубашек охлаждения головок цилиндров или впускного трубопровода двигателя.
Термостаты могут быть жидкостные и с твердым наполнителем.
В жидкостном термостате (рис. 10, б) имеется гофрированный баллон 7, заполненный легко испаряющейся жидкостью. Нижний конец баллона закреплен в корпусе б термостата, а к штоку 5 верхнего конца припаян клапан 4.При температуре охлаждающей жидкости ниже 351 К (78°С) клапан термостата закрыт (рис. 10, а) и вся жидкость через перепускной шланг 2 (байпас) направляется обратно в водяной насос, минуя радиатор. Вследствие этого, ускоряется прогрев двигателя и впускного трубопровода.
Когда температура превысит 351 К (78°С), давление в баллоне 7 увеличивается, он удлиняется и приподнимает клапан 4. Горячая жидкость через патрубок 3 и шланг направляется в верхний бачок радиатора. Клапан 4 полностью открывается при температуре 364 К (9ГС) (ЗМЗ-53).
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск