Механические колебания
(9)
Решение этого уравнения существенно зависит от знака разности: w2 = w02 -b2, где w — круговая частота затухающих колебаний. При условии w02 -b2 > 0, w является действительной величиной и решение (3) будет следующим:
(10)
График этой функции дан на рисунке.
r=0 width=296 height=227 src="images/referats/13438/image023.jpg">
Рис. 2. Затухающие колебания.
Пунктиром изображено изменение амплитуды: A = ±A0e-bt.
Период затухающих колебаний зависит от коэффициента трения и равен:
(11)
При незначительном сопротивлении среды (b2 << w2) период практически равен . С ростом коэффициента затухания период колебаний увеличивается.
Из формулы, выражающей закон убывания амплитуды колебаний, можно убедиться, что отношение амплитуд, отделенных друг от друга интервалом в один период (Т), остается постоянным в течение всего процесса затухания. Действительно, амплитуды колебаний, отделенные интервалом в один период, выражаются так:
.
Отношение этих амплитуд равно:
. (12)
Это отношение называют декрементом затухания.
В качестве меры затухания часто берут величину натурального логарифма
этого отношения:
Эта величина носит название логарифмического декремента затухания за период.
При сильном затухании b 2 > w02 из формулы (11) следует, что период колебания является мнимой величиной. Движение при этом носит апериодический (непериодический) характер - выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий.
Вынужденные колебания. Резонанс
Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающей силы). Пусть вынуждающая сила изменяется со временем по гармоническому закону: f = F0 cosW t , где F0 - амплитуда, W - круговая частота вынуждающей силы.
При составлении уравнения движения нужно учесть, кроме вынуждающей силы, также те силы, которые действуют в системе при свободных колебаниях, то есть квазиупругую силу и силу сопротивления среды. Тогда уравнение движения (второй закон Ньютона) запишется следующим образом:
.
Разделив это уравнение на m и перенеся члены с dx и d2x в левую часть получим неоднородное линейное дифференциальное уравнение второго порядка:
где — коэффициент затухания, — собственная частота колебаний системы. Решением этого уравнения будет:
(13)
Явление резкого увеличения амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колеблющегося тела называется резонансом, происходящие при этом колебания - резонансными, а их частота w рез— резонансной частотой колебаний.
Расчет дает значение резонансной частоты:
wрез =
Если b очень мало, то wp » w0 . Подставив wрез вместо W в (13), получим максимальную величину амплитуды колебаний при резонансе:
Арез =. (14)
Чтобы определить резонансную частоту wрез, нужно найти максимум функции (2.13) или, что то же самое, минимум выражения, стоящего под корнем в знаменателе. Продифференцировав это выражение по W и приравняв нулю, мы получим условие, определяющее wрез:
-4(w02 -W 2)W + 8b 2W = 0.
Это уравнение имеет три решения: W = 0 и .
Решение, равное нулю, соответствует максимуму знаменателя. Из остальных двух решений отрицательное должно быть отброшено, как не имеющее физического смысла (частота не может быть отрицательной). Таким образом, для резонансной частоты получается одно значение: wрез =. Подставив это значение частоты в (13), получим выражение для амплитуды при резонансе:
Арез =
Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (частоты колебаний) показана графически на рисунке: b1 < b2 <b3
Это резонансные кривые.
Рис. 3. Резонансные кривые.
1.2 Автоколебания
Системы автоматически регулирующие подачу энергии от внешнего источника, называются автоколебательными, а происходящие в них незатухающие периодические процессы - автоколебаниями. Такими системами являются часы, электрический звонок, ламповый генератор электромагнитных колебаний и т.д.
1.3 Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных
Сложение гармонических колебаний, направленных по одной прямой.
Возможны случаи, когда тело участвует одновременно в нескольких колебаниях, происходящих вдоль одного и того же или вдоль различных направлений.
Рассмотрим сложение двух гармонических колебаний одинакового направления, одинаковой частоты и с одинаковыми амплитудами, но с разными начальными фазами a01 и a02 . Смещение x колеблющегося тела будет суммой смещений x1и x2:
x = x1 + x2 = Acos(w0t + a01) + Acos(w0t + a02).
Используя известную из тригонометрии формулу для суммы косинусов двух углов, имеем:
Aрез ,
то есть получается гармоническое колебание той же частоты с начальной фазой и амплитудой Aрез.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода