Растворение твердых веществ
Если, например , то должен быть известен порядок реакции . Тогда уравнение (18) принимает вид:
(19)
Входящие в уравнение (18) и (19) интегралы могут быть определены численными или гра
фическими методами. Необходимая для выполнения интегрирования зависимость от , а также связь между и , содержатся в результатах периодического опыта.
Таким образом, уравнение (18) позволяет вычислить значения, отвечающие любому значению , и тем самым определить кинетическую функцию.
2.4 Определение времени полного растворения
В отличие от кинетической функции , которая сохраняет свой вид для любых постоянных значений Т и С, величина всегда относится к совершенно определенным условиям растворения и изменяется при изменении этих условий. Очевидно, что если растворение проходит при постоянной концентрации активного реагента, то величина совпадает со временем полного растворения в периодическом опыте: . При переменной концентрации дело обстоит иначе: величина связана с отношением:
(20)
В частности, для определения времени полного растворения при некоторых фиксированных значениях и достаточно подставить в уравнение (20) вместо и вместо :
(21)
Естественно использовать для определения тот периодический опыт, для которого . Тогда формула (21) упрощается:
(22)
Входящий в уравнения (21) и (22) интеграл численно равен площади под кривой на рис.1. Для его вычисления можно воспользоваться любым из известных методов.
Таким образом, результаты периодического опыта, проведенного при изменяющейся концентрации активного реагента , позволяют легко определить время полного растворения , относящейся к постоянным значениям и . Для перехода к иным значениям концентрации и температуры можно воспользоваться соотношением, вытекающим из уравнений (20) и (21).
(23)
В частности, если и , то:
(24)
Таким образом, зная энергию активации Е, порядок реакции и время полного растворения при некоторых фиксированных значениях и по формуле (24) можно вычислить время полного растворения при любых значениях и .
2.5 Рекомендации по проведению исследований и выполнению расчетов
Результаты одного лабораторного периодического опыта в принципе позволяют определить кинетическую функцию . В действительности нужно провести серию опытов в диапазоне интересующих значений концентрации активного реагента и температуры. Это необходимо для обеспечения надежности кинетических величин.
Кроме того, проведение серии опытов необходимо для экспериментального подтверждения инвариантности кинетической функции относительно концентрации и температуры.
Результатом такой серии опытов будет совокупность кривых . Из каждой кривой нужно определить кинетическую функцию, вычислив для ряда значений соответствующие значения х по формуле (18). Из этой формулы следует, что для расчета нужно знать время полного растворения в периодическом опыте и иметь достаточно надежные данные о ходе кинетической кривой во всем диапазоне значений от 0 до .
Аргумент кинетической функции х есть отношение продолжительности растворения и времени полного растворения . Величина играет, следовательно, роль нормировочного множителя или масштабного коэффициента, позволяющего выразить время в безразмерных единицах. В качестве такого коэффициента с равным успехом может быть использовано время, необходимое для достижения любого фиксированного значения . Пусть это фиксированное значение равно , оно должно быть выбрано таким образом, чтобы изменению от 1 до соответствовали достаточно надежные участки всех экспериментальных кривых. Время, необходимое для достижения значения при постоянных температуре и концентрации активного реагента, обозначим через . Введем теперь новое безразмерное время : . При обработке экспериментальных данных относящихся к каждому проведенному опыту, вместо определения х по формуле (18) вычисляют значения по формуле: