Межотраслевой баланс

В системе уравнений (3) все неизвестные х1, х2, … , хn перенесем в левую часть уравнения ми получим новую фору записи системы уравнений межотраслевого баланса:

(5)

Модель межотраслевого баланса (5) имеет простую матричную форму записи (Е – А) Х = У и позволяет решить следующие задачи:

1) определить конечный

объем конечной продукции отраслей у1, у2, … , уn по заданным объемам валовой продукции у1, у2, … , уn (в матричной форме У = (Е – А) Х);

2) по заданной матрице коэффициентов прямых затрат А определить матрицу коэффициентов полных затрат Р, элементы которой служат важными показателями для планирования развития отраслей (в матричной форме Р = (Е – А)-1);

3) определить объемы валовой продукции отраслей х1, х2, … , хn по заданным объемам конечной продукции у1, у2, … , уn (в матричной форме Х = (Е – А)-1 У = Р У );

4) по заданным объемам конечной или валовой продукции отраслей х1, х2, … , хn определить оставшиеся n объемов.

В первой задаче планируется валовой выпуск продукции, а конечная продукция является производным показателем. Такой подход легче осуществить на практике, но он может привести к нерациональной структуре национального дохода и диспропорциям в развитии отдельных отраслей третья задача предлагает более прогрессивный принцип планирования – от национального дохода. Однако рассчитанные уровни валовой продукции для одних отраслей могут оказаться завышенными и ресурсно-необеспеченными, а для других – заниженными, не загружающими даже действующие производственные мощности. Четвертая задача в определенной степени отражает существую практику планирования.

Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно, чтобы выполнялось одно из перечисленных ниже условий:

1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица (Е – А)-1 0;

2) матричный ряд Е + А + А2 + А3 +….= сходится, причем его сумма равна обратной матрице (Е – А)-1;

3) наибольшее по модулю собственное значение матрицы А, т.е. решение характеристического уравнения , строго меньше единицы;

4) все главные миноры матрицы (Е – А), т.е. определители матриц, образованные элементами первых строк столбцов этой матрицы, порядка от 1 до n, положительны.

Более простым способом проверки продуктивности матрицы А является ограничение на величину ее нормы. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна. Данное условие являеться достаточным, но не необходимым условием продуктивной.

Список использованной литературы

1. И.В.Орлова Экономико-математическое моделирование: М. ВЗФЭИ 2007.

2. В.Д.Коновалов Экономико-математические модели и методы: Волгоград 1998.

Страница:  1  2 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы