Зависимость цены от качества

Цена колготок – это зависимая переменная Y. В качестве независимых, объясняющих переменных выбраны: плотность (DEN) Х1, содержание полиамида Х2 и лайкры Х3, фирма-производитель Х4.

Описание переменных содержится в таблице 2.

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; оценить статистическую значимость коэффициентов регрессии.

2. Оценить статистическую зна

чимость параметров регрессионной модели с помощью t-критерия; нулевую гипотезу о значимости уравнения проверить с помощью F-критерия; оценить качество уравнения регрессии с помощью коэффициента детерминации.

Таблица 2.

Переменная

Описание

номер торговой точки

price

цена колготок в рублях

DEN

плотность в DEN

polyamid

содержание полиамида в %

lykra

содержание лайкры в %

firm

фирма-производитель: 0 - Sanpellegrino, 1 - Грация

3. Построить уравнение множественной регрессии только со статистически значимыми факторами.

4. Отобразить графически исходные данные и расчетные значения.

РЕШЕНИЕ ЗАДАЧИ

1. Рассчитать матрицу парных коэффициентов корреляции; оценить статистическую значимость коэффициентов регрессии.

Сначала нужно отобрать факторы, которые должны войти в модель. Для этого строится матрица коэффициентов парной корреляции (табл.3.)

Таблица 3.

 

Y

X1

X2

X3

X4

Y

1

       

X1

0,071711

1

     

X2

-0,55678

-0,42189

1

   

X3

0,607569

0,435579

-0,66726

1

 

X4

-0,12119

-0,10354

0,060901

-0,43912

1

Анализ показал, что независимые переменные Х2 (полиамид) и Х3 (лайкра) имеют тесную линейную связь с результативным фактором Y. Проверяем наличие мультипликативности: │ │= 0,66726. Считается, что две переменных явно коллинеарны, т.е. находятся между собой в линейной зависимости, если ≥ 0,7. Х2 и Х3 могут включаться в модель, т.к. мультипликативности нет. Х1 и Х4 в незначительной степени влияют на Y, их отбрасываем.

Коэффициенты множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов. Для упрощения работы эти коэффициенты можно получить в Excel с помощью отчета по регрессии. Получаем уравнение линейной модели: у = -0,476х1-0,588х2+2,245х3+7,554х4+ 104,163.

Это означает, что с увеличением лайкры в составе колготок на 1%, их цена поднимется на 2,245 у.е. А при увеличении полиамида в составе колготок на 1%, их цена упадет на 0,588 у.е.

2. Оценить статистическую значимость параметров регрессионной модели с помощью t-критерия; нулевую гипотезу о значимости уравнения проверить с помощью F-критерия; оценить качество уравнения регрессии с помощью коэффициента детерминации.

Подставляя значения факторов Х в уравнение регрессии, вычисляем урасч, а записываем ряд остатков, составляем таблицу 4.

Таблица 4.

prise

polyamid

lykra

у расч.

остатки

 

Y

X2

X3

   

1

49,36

86

14

75,4920707

-26,1321

2

22,51

97

3

51,8771925

-29,3672

3

22,62

97

3

51,8771925

-29,2572

4

59,89

90

17

79,8758598

-19,9859

5

71,94

79

21

90,5623507

-18,6224

6

71,94

79

21

90,5623507

-18,6224

7

89,9

85

15

81,1152196

8,78478

8

74,31

85

13

71,8598003

2,4502

9

77,69

88

10

63,359152

14,33085

10

60,26

86

14

73,5171042

-13,2571

11

111,19

82

18

77,2971365

33,89286

12

73,56

83

14

75,2814724

-1,72147

13

84,61

84

16

71,6300376

12,97996

14

49,9

82

18

84,8513019

-34,9513

15

89,9

85

15

68,7964882

21,10351

16

96,87

85

15

64,0319222

32,83808

17

39,99

98

2

29,9853791

10,00462

18

49,99

76

24

84,769301

-34,7793

19

49,99

83

17

67,7240545

-17,7341

20

49,99

88

10

49,065454

0,924546

21

49,99

76

24

80,004735

-30,0147

22

49,99

42

8

66,8636812

-16,8737

23

129,9

50

42

130,949041

-1,04904

24

84

82

18

77,2971365

6,702864

25

61

86

14

75,4920707

-14,4921

26

164,9

16

30

155,377089

9,522911

27

49,9

82

18

84,8513019

-34,9513

28

89,9

85

15

81,1152196

8,78478

29

129,9

50

42

130,949041

-1,04904

30

89,9

86

14

73,5171042

16,3829

31

105,5

85

15

76,3506536

29,14935

32

79,9

88

12

79,7614203

0,13858

33

99,9

88

12

77,3791373

22,52086

34

99,9

73

25

110,626959

-10,727

35

119,9

85

12

79,1435056

40,75649

36

109,9

83

14

84,8106044

25,0894

37

59,9

86

14

75,4920707

-15,5921

38

79,9

82

18

77,2971365

2,602864

39

82,9

86

14

75,4920707

7,407929

40

111,8

82

18

77,2971365

34,50286

41

83,6

82

18

77,2971365

6,302864

42

60

86

14

75,4920707

-15,4921

43

80

82

18

77,2971365

2,702864

44

90

76

24

89,533867

0,466133

45

120

74

26

85,6718339

34,32817

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы