Методы экономической кибернетики

Пирамида управления для осуществления иерархического управления в рамках «наивного» подхода может быть количественно описана в рамках итерационного уравнения (рекурсивной или возвратной последовательности) для подсчета количества сотрудников-менеджеров на каждом из иерархических уровней. Коэффициенты этого итерационного уравнения зависят как от специфических черт процесса управления, осуществля

емого человеком, так и от конкретных особенностей объекта, над которым осуществляется управление (фирмы, организации, государства, и т.п., включая специфику личностных черт высшего руководства).

Математически сказанное может быть записано в виде формулы:

Nn=b1Nn-1+b2Nn-2

где Nn - количество менеджеров на n-том иерархическом уровне пирамиды управления, b1 и b2 - коэффициенты, которые зависят: от специфических черт управления для человека, от особенностей организации системы технической поддержки управления, от личностных черт менеджеров высшего уровня, от особенностей культуры, от специфики области экономики (или социальной сферы), в которой работает данная управленческая структура, от специфики поставленных перед данной управленческой структурой задач и т.п.

Рассмотрим пирамиду управления, осуществляемую при условии «умеренно жесткого авторитаризма» и постоянного контроля со стороны вышестоящих уровней. Этой моделью описывается пирамида управления, которая жестко удерживается в рамках единой цели и единых методов организации работы.

Это – простейшая модель менеджмента, когда происходит параллельная обработка информации: каждый подчиненный «отрабатывает» свой участок управленческой деятельности.

«Демократическая» модель с осуществлением некоего делегирования полномочий и осуществлением только «постоянного личного надзора» над менеджерами более низкого уровня иерархии. Этой моделью описывается случай удержания единой цели в рамках всей пирамиды, но менеджерам дается возможность предлагать свои решения, - которые, однако «утверждаются» менеджером вышестоящего уровня.

«Демократическая» модель с максимально возможной степенью делегирования полномочий. Такой моделью описываются пирамиды управления, в которых допускается разнообразие мотиваций на каждом из уровней, но, тем не менее, каждый из уровней удерживается (вышестоящим менеджером) в рамках решения единой задачи. При этом существенной особенностью данной модели является наличие определенного соответствия уровней иерархии пирамиды управления и уровней иерархии объекта, которым управление осуществляется.

В этом случае нужно воспользоваться специфическими особенностями организации иерархического управления человеком, из которых следует, что для оптимального управления один менеджер из «вышестоящего» уровня иерархии должен передавать информацию на нижележащий уровень, и эту информацию должны конкретизировать под реальные решения уже на этом уровне иерархии не менее 16-ти менеджеров (причем в рамках специально организованной коммуникации между собой).

«Демократическая» модель с делегированием полномочий «по направлениям». В этом случае при осуществлении управления один вышестоящий менеджер сможет «передавать вниз» команды не более чем для (7±2) группам менеджеров, которые уже должны быть способны конкретизировать это управленческое решение для данного региона или направления. Математически это можно записать так:

Nn=(7±2)16Nn-1+(7±2)Nn-2

Во всех предыдущих моделях неявно предполагалось наличие одновременности и непрерывности в управлении, то есть предполагалось, что все менеджеры во всей пирамиде управления работают одновременно над выполнением одной и той же задачи. Если отказаться от этого предположения, возникает возможность описать так называемое «управление проектами»: процесс создания отдельных групп – отдельных пирамид управления, целью которых является осуществление анализа ситуации, принятие решения и его осуществление.

В этом случае один менеджер высшего уровня может осуществлять управление более чем (7±2) группами, поскольку такое управление осуществляется в разные промежутки времени. Это можно записать соотношением

Nn=16kNn-1

где k – количество групп, которыми управляет данный менеджер. Отметим, что в этом случае «обратную связь» можно полагать отсутствующей, так как ее может осуществлять вышестоящий менеджер (например, решая, достигнута цель или нет).

Иерархические системы управления – ИСУ – могут быть построены универсальным образом. Однако для систем экономических и/или социальных единственным представителем является человек – индивид, осуществляющий управление. Причем тот же самый человек осуществляет управления на всех уровнях ИСУ. Способен ли произвольно взятый человек «работать» - осуществлять эффективное управление – на любом из уровней управления? Как свидетельствует практика – ответ является отрицательным. Таким образом, рассматривая ИСУ, составленные из одних и тех же объектов, осуществляющих управление (из людей), приходим к выводу о наличии необходимости разделения управленцев на координаторов и тиражировщиков. Такое подразделение понимается именно в управленческом смысле.

Достижение эффективного управления возможно только в условиях наличия самоорганизации ИСУ: показано, что эти условия зафиксированы в законодательстве развитых стран мира.

Задача 1.4

Фирма изготавливает два вида изделий в количестве х1 и х2. Единица первого изделия приносит П1 = 48 тыс.грн. гривен прибыли, а второго П2 = 28 тыс.грн. гривен прибыли. Производственные мощности позволяют выпускать не более 400 тыс.тонн двух наименований изделий вместе, при этом производство первого изделия не может превышать более чем в 4 раза производство второго изделия. Определить объем производства, который приносит, максимальную прибыль. Построить график оптимизации прибыли.

Решение

Целевая функция имеет вид:

F(х1,х2,….хn) = F(х1,х2,) = 48х1 + 28 х2 тыс.грн.

Объёмы выпуска х1 и х2 имеют явно позитивные размеры, т.е. х10; х2 0.

Между значениями х1 и х2 есть связи

х1 + х2 400

х1 4х2

В силу позитивных значений параметров х1 и х2 решение необходимо искать в первом квадрате.

Ограничения по суммарному (х1 + х2 400) сужает поиск до того, что находится в середине треугольника ОАС, ограниченного прямой х1 + х2 = 400. Ограничения х1 4х2 еще больше сужает область допустимых по условию задачи значений х1 и х2. Среди всех значений х1 и х2 сосредоточенных в середине треугольника ОАВ, оптимальным является точка В. В этой точке, которая соответствует координатам х1 = 320; х2 = 80, достигается наиболее из допустимых значений х1 равное 320. Оптимальному решению соответствует точка В, в которой целевая функция достигает своего максимального значения.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы