Однофакторный регрессионный анализ при помощи системы GRETL

Таблица 2 – Данные для анализа к заданию 2

Количество

Доход, грн

Вариант 5

311

388

250

391

209

owrap >

394

323

388

253

398

520

479

109

353

381

438

329

415

253

392

420

437

321

394

250

382

174

385

156

367

305

380

450

465

411

419

364

416

339

390

269

377

114

341

318

403

256

380

291

386

377

402

388

419

484

457

364

434

380

435

Решение:

Сначала проведем оценку регрессионного уравнения вида

График показывает, что спрос на компьютеры возрастает с увеличением дохода потребителей. Коэффициент корреляции между данными составляет 0,91, что говорит о сильной положительной связи между переменными.

Далее построим регрессионные модели вида:

и , где – средний доход потребителей (грн), – продажа компьютеров (шт.)

Оценка регрессионного уравнения вида

Регрессионное уравнение будет иметь вид: y = 0.79x, где х - средний доход потребителей, у – спрос на компьютеры.

При уровне значимости 5%принимается альтернативная гипотеза о значимости коэффициентов регрессионного уравнения (р<α)

Стандартная ошибка регрессии – 78,95, что является достаточно высоким результатом по сравнению со средним значением зависимой переменной – 312,3.

Коэффициент детерминации 94% свидетельствует о том, что степень соответствия построенной модели исходным данным высока.

На основе результатов дисперсионного анализа можно принять альтернативную гипотезу, т.е. можно утверждать, что уравнение регрессии адекватно отражает зависимость между переменными.

Теперь проведем оценку регрессионного уравнения вида:

Регрессионное уравнение имеет вид: у = -846,609+2,87х.

Средняя ошибка регрессии ниже, чем в предыдущем случае и составляет 43,46.

При уровне значимости 5% принимается альтернативная гипотеза о значимости коэффициентов регрессионного уравнения (р<0.05).

Коэффициент детерминации 82% говорит о более низкой степени соответствии построенной модели исходным данным в отличие от предыдущей.

На основе дисперсионного анализа при уровне значимости в 5% можно принять альтернативную гипотезу, то есть можно утверждать, что уравнение регрессии адекватно отражает зависимость между переменными.

Для выбора модели составим таблицу статистических оценок уравнения регрессии и сравним критерии качества регрессионного уравнения в первом и во втором случае.

 

Значимость коэффициентов по критерию Стъюдента

значим

значимы

Адекватность регрессионного уравнения по критерию Фишера

адекватно

адекватно

Стандартная ошибка регрессии

78,95

43,46

Коэффициент детерминации

94%

82%

Log-likelihood

-173,124

-154,961

AIC

348,249

313,382

BIC

349,65

316,185

HQC

348,697

314,279

Анализируя характеристики двух моделей можно прийти к выводу о том, что в второй модели меньше ошибка и лучше показатели качества регрессионного уравнения. Следовательно, более точной является вторая модель.

Таким образом, модель зависимости спроса на компьютеры от среднего дохода потребителей будет иметь вид: у = -846,609+2,87х.

В случае, если не учитывать во внимание средний уровень дохода потребителей, то спрос на компьютеры будет находиться на отметке - 847 единиц. Уравнение регрессии показывает, что если средний доход возрастет на 1 грн, то это приведет к увеличению спроса на 2,87 штук.

Задание 3

Менеджер торгового предприятия, занимающегося реализацией продуктов питания, имеет следующие данные о ежеквартальной оборачиваемости оборотных средств и уровне рентабельности. Проанализируйте эти данные и составьте регрессионную модель зависимости рентабельности от оборачиваемости оборотных средств.

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы