Структура системного анализа

Выбор целевой функции и ограничений, а также структуризация проблемы позволяет переходить непосредственно к выявлению и выбору вариантов решения каждой из подпроблем и проблемы в целом. Выполнение этого этапа в значительной мере составляет предмет методологии, именуемой исследованием операций.

Рассматриваемый этап предусматривает выявление вариантов решений. Выявление вариантов – процедура

практически неформализуемая, но в ходе сравнения и выбора вариантов уже в полной мере вступает в действие “математика” системного анализа. Именно здесь особенно важно творческое взаимодействие работников аппарата управления со специалистами по исследованию операции (экономической кибернетике).

В ходе этого взаимодействия организатор производства, работник аппарата управления должен активно участвовать в постановке задачи, в решении вопросов выбора исходной информации, в рассмотрении промежуточных результатов решения и уточнении постановки задачи по результатам такого рассмотрения. Наконец, работники аппарата управления полностью осуществляют экспертизу окончательного решения, его принятие и реализацию. Для выполнения этих функций важно хорошо понимать сущность задачи и возможности экономико-математических методов, но вовсе не обязательно владеть этими методами.

Основные виды решений подпроблем. Приемы выявления вариантов решений, а также методы сравнения и выбора наилучших вариантов в значительной мере определяются тремя факторами:

постановкой задачи, определяющей предмет и характер выбора;

областью использования результатов решений;

полнотой и определенностью исходной информации, используемой для выбора решений.

Основные виды решений в зависимости от перечисленных выше факторов:

Решения, зависящие от постановки задачи. По особенностям постановки задач и характеру выбора решений большинство подпроблем, по которым приходится осуществлять выбор решения в ходе управления социально-экономичнскими системами, можно разделить на три основных вида, в каждом их которых осуществляется выбор альтернативных вариантов, значений варьируемых параметров системы, состава (или структуры) формируемых комплексов.

Выбор альтернативных вариантов представляет собой сущность решения таких подпроблем, при анализе которых выявлялись два или несколько взаимоисключающих (альтернативных) варианта.

Термин “альтернатива” происходит от латинского alternare – чередование. В формальной и математической логике чаще используется термин “дизъюнкция” (от латинского disjunction – разделение), который означает, что два или несколько высказываний (положений) связаны между собой союзом “или”:

или А, или В, или С.

С использованием обозначений математической логики эта дизъюнкция может быть записана так: A v B v C.

Следует, однако, учитывать, что союз “или” может означать как неисключающие, так и взаимоисключающие разделение высказываний. Так, например, можно утверждать, что стимулирование – это поощрение или наказание. Но это утверждение не означает, что поощрение не может использоваться в сочетании с наказанием.

Вместе с тем, если рассматриваются варианты размещения проектируемого производства (на предприятии А, или В, или С), то здесь союз “или” выступает в своем взаимоисключающем значении. Такая дизъюнкция именуется строгой и означает:

или А, или В, или С, но не то и другое вместе!

Альтернативные варианты решений соответствуют именно строгой дизъюнкции, которую в математической логике принято обозначать двойным знаком: А vv B vv C.

Таким образом, задача выбора альтернатив состоит в том, чтобы из двух или нескольких взаимно исключающих вариантов решения выбрать тот единственный, который в данных конкретных условиях обеспечит наибольшую степень достижения целей.

Выбор значений варьируемых параметров системы представляет собой широкий класс так называемых оптимизационных задач по выбору режимных и конструктивных параметров отдельных аппаратов или распределению плановых заданий и ресурсов, т. е. определению значений внешних (входных и выходных) параметров производства, обеспечивающих его оптимальное взаимодействие с остальными подсистемами промышленной системы старшего ранга. К этому же классу задач относится определение обоснованных значений уровня запасов, большинства норм, нормативов и многих других параметров.

Чаще всего в подобных задачах оптимизации речь идет об одновременном определении значений совокупности варьируемых параметров, которые при заданных условиях (ограничениях) обеспечивают максимум или минимум (т. е. экстремум) соответствующей целевой функции.

Лишь в простейших задачах выбору полежит только один варьируемый параметр, но даже в этих случаях принципиальное отличие от выбора альтернативных вариантов состоит в том, что оптимальное решение является наилучшим из всех возможных в данных условиях. В то время как выбор альтернативы обеспечивает лучшее решение из числа заданных вариантов. Поэтому называть избранную альтернативу оптимальным решением неправильно, хотя такие ошибки нередко допускают, утверждая например; “из трех рассмотренных схем мы приняли оптимальную”.

Выбор состава формируемых комплексов, или набора компонентов, относится к другому классу оптимизационных задач, поскольку по своей постановке и методам решений они несколько отличаются от предыдущих.

Типичными примерами задач этого класса является выбор комплекса мероприятий, которые в пределах выделенных ограниченных ресурсов обеспечивают наибольший рост эффективности производства, выбор числа и типа, размеров оборудования. К этому же классу задач относится формирование сетевых планов выполнении комплексных работ в так называемых системах сетевого планирования и управления (СПУ). В известной мере транспортные задачи по выбору рациональных перевозок также можно отнести к рассматриваемой группе, так как в таких случаях речь идет о выборе оптимального набора последовательных отрезков пути из множества возможных вариантов или о формировании транспортной партии продуктов.

Решение, зависящие от области их использования. Методы выбора альтернатив, как будет показано ниже, мало зависят от области использования результатов решения. Вместе с тем методология решения оптимизационных задач формировалась и развивалась применительно к областям их использования. Укажем три группы таких решений: оптимальное проектирование; оптимальное управление производственными процессами; оптимальное планирование

В постановке каждой из указанных групп задач имеются особенности, заслуживающие внимания. Важной в этом смысле процедурой является выявление варьируемых параметров, оптимальные значения которых подлежат определению. Указанные выше три группы задач различаются именно по составу варьируемых параметров, выбор которых встречается в задачах проектирования и управления. А также неуправляемых факторов, влияющих на выбор решений.

Варьируемые параметры можно разделить (в первом приближении) на три основные категории:

проектно-конструктивные параметры; применительно к проектированию отдельных производств – это, как правило, размеры аппаратов, их элементов, трубопроводов, толщина слоя катализатора и т. п.; при проектировании предприятий к этой же категории варьируемых параметров можно отнести емкость складов, параметры, определяющие мощность вспомогательных производств и многие другие параметры инфраструктуры промышленной системы;

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы