Приоритетные пути развития и реализации новых технологий, отвечающих требованиям промышленной экологии

Технико-экономический эффект от использования разработанного способа подготовки шихт выражается в увеличении производительности процесса компактирования в 1,2-1,5 раза, а процесса стекловарения на 23-40%. Летучесть щелочных соединений в процессе варки шихты уменьшилась на 1,6-5,3%, а запыленность атмосферы снизилась в 2,4-7,5 раза. Одновременно снизился расход топлива в среднем на 20%. Выход

годной продукции увеличился на 5-7%. Неоднородность стекломассы уменьшилась со 150-180 А до 120 А.

Техника вторичной переработки твердых силикатных отходов

На основе разработанного алгоритма созданы и предлагаются к реализации новые процессы и аппараты, технологические комплексные линии и изделия, направленные на защиту биосферы и человека от воздействия отходов стекла, образующихся как в промышленном, так и коммунально-городском секторах экономики.

По предложенной классификации отходов выявлены на примере московского и владимирского регионов приоритетные направления экобиозащит-ных технологий, которые успешно апробированы и реализуются в промышленном масштабе.

Первая технология - получение из стеклобоя порошков с максимальным размером до 800 мкм. Процесс заключается в термообработке и резком охлаждении нагретого боя. За счет эндоудара происходит изменение структуры отходов с последующим их самоизмельчением.

Все стадии процесса протекают в одном аппарате. Технология отличается компактностью и экологической безопасностью.

Вторая технология - получение из стеклобоя также различного происхождения расплава с последующей его грануляцией до размеров 2-5 мм. Реактор для переплавки снабжен двойным сводом, в котором размещен рекуператор. Установка отличается высокой производительностью и отвечает требованиям современных малоотходных производств.

Область использования: полученные порошки и гранулы повторно используют в процессах стекловарения или в качестве дешевых наполнителей различного вида в производстве стройматериалов, дорожных работах и др.

Учитывая специфические свойства стеклянных отходов, предложена третья технология - полученные по первым двум технологиям порошки и гранулы перерабатывают в камере-формователе в уникальные микроизделия: светоотражающие шарики размером до 650 мкм и пустотелые сферы - до 200 мкм. Технические преимущества нового материала - низкая себестоимость по сравнению с отечественными и зарубежными аналогами, так как не требуется подготовки специальных компонентов и стекломассы.

Область использования: на базе полученных микроизделий разработан ряд товарной продукции - лакокрасочные и антикоррозионные покрытия, светоотражающие мастики и специальная термоизоляция, выпуск которых налажен на российских предприятиях.

Основные технические характеристики микроизделий

Шарики

Полые сферы

Плотность 2,50-2,55 г/см3

Состав стекла: натрий-кальций-силикатный;

боросиликатный и др.

Показатель преломления 1,52-1,54

Твердость (по Моосу) 5-6 ед.

Температура размягчения 650-730 °С

Плотность - 0,24-0,40 г/см3 Кажущаяся плотность - 0,11-0,35 г/см3 Коэффициенты заполнения объема (КЗО) - 55-64 Плавучесть - больше 92% Изостатическая прочность - 5-10 МПа

Перспективным является использование микроизделий в качестве абразивного материала для автомобилестроения и наполнителя лечебно-ожоговых и противопролежневых кроватей.

На рис. 6. изображена схема аппаратурного оформления технологической линии получения стеклянных микрошариков. В состав основного оборудования для получения микрошариков входят измельчитель стеклогранулята со встроенным воздушно-механическим классификатором 1, сепаратор-циклон 2 для отделения от потока воздуха измельченных частиц стекла, направляемых в дальнейшем на формование микрошариков, рукавный фильтр 3 для отделения стеклянной пыли и очистки сбрасываемого воздуха в атмосферу, вентилятор 4, обеспечивающий газодинамический режим работы измельчителя и сепараторов, питатель микрошариков стекла 5, воздушный эжектор 6, печь формования микрошариков 7, сепаратор-циклон 8 для отделения основной массы сферических частиц от газовоздушного потока, сепаратор 9 для выделения микрошариков маленького размера, классификатор виброкипящего слоя 11 с сепараторами 12.1-12.3, хвостовые вентиляторы 10, 13, обеспечивающие газодинамические режимы работы соответственно печи формования и классификатора виброкипящего слоя.

Процесс изготовления стеклянных микрошариков осуществляется следующим образом. Исходный стеклогранулят загружается в измельчитель с встроенным классификатором 1, в котором происходит его измельчение и предварительная классификация частиц стекла по размерам. Из классификатора порошок стекла потоком воздуха уносится в первый сепаратор 2, в бункере которого осуществляется сбор стеклопорошка, направляемого далее в печь формования. Поток воздуха после отделения основной массы частиц стекла в сепараторе 2 направляется в рукавный фильтр 3, в котором осуществляется эффективная очистка газовоздушного потока перед выбросом в атмосферу. Стеклянный порошок из бункера сепаратора 2 транспортируется в бункер питателя 5, из которого с помощью воздушного эжектора 6 поступает в пневмотранспортную систему 14. Транспортирование порошка в печь формования 7 осуществляется потоком сжатого воздуха, нагреваемого отходящими газами в спиральном теплообменнике 15, установленном в верхней части печи формования. Отформованные микрошарики охлаждаются в потоке газов за счет подсоса холодного атмосферного воздуха в верхней части печи формования. Отделение отформованных микрошариков от газовоздушного потока осуществляется последовательно в первом сепараторе 8 и втором сепараторе 9, причем во втором сепараторе происходит выделение наиболее мелких частиц. Стеклянные микрошарики, собранные в бункере сепаратора 8, транспортируются в классификатор виброкипящего слоя 11, где происходит разделение всей массы частиц по размерам на отдельные фракции, улавливаемые в сепараторах. Газодинамический режим работы установки формования и классификатора микрошариков по размерам обеспечивается работой хвостовых вентиляторов 10 и 13 соответственно.

Таким образом, рекуперация отходов стекла и стеклянного волокна имеет большое значение для окружающей среды, экономии сырьевых материалов и энергии. При этом целесообразность применения того или иного способа рекуперации в первую очередь определяется возможностью направленной их переработки в качестве сырья для основного производства и создания замкнутых химико-технологических систем с использованием вторичных материальных ресурсов.

Сравнительные показатели микроизделий -стеклошариков (СШ) и микросфер (МС)

Наименование показателей

Ед. изм.

Предлагаемый вариант [4]

АО «Пульс» («Химлаб-прибор»), г. Клин

АО «Новгород­ский з-д стек­ловолокна»

« Potters Industries lnc.» (США)

СШ

МС

СШ

МС

СШ

1. Размеры частиц

мкм

40-600

10-200

300-700

50-120

40-150

2. Плотность

г/смл

2,5-2,55

0,24-0,40

2,5

0,35-0,52

2,5

3. Плавучесть, более

%

5-10

3-7

4. Светоотражение

%

78-82

80-83

67-69

87-91

5. Твердость

ед. (по Моосу)

5-6

4-5

 

6. Температура раз­мягчения

°С

650-730

650-730

530-580

 

660-680

7. Состав стекла

 

алюмо-силикатный

боро-силикатный

натрий-кальций силикатный

 

8, Исходное сырье

 

промышлен­ные и бытовые отходы стекла

специально подготов­ленная стекло­масса

специально подготов­ленный расплав

 

9. Разброс по размерам

%

±4+6

±7+9

±30+35

±40+50

9+7

10 Стоимость

$/кг

1

2

1,5

4-5

2,5-3

11. Производительность установки

кг/час

100

75

30

40-45

 

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы